www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Dreiecksungl. von metr. Räumen
Dreiecksungl. von metr. Räumen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecksungl. von metr. Räumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Mi 20.04.2011
Autor: xcrane

Aufgabe
Sei (X, d) ein metr. Raum. Wir definieren



       X x X -> IR
     /
d* :
     \  
       (p,q) I-> min(1, d(p,q))

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo

Da der Formeleditor nicht wollte, musste ich die Aufgabenstellung leider so hinschreiben.

Man soll also beweisen, dass d* ein metrischer Raum ist.
Für die Axiome
(1) d(p,q) >= 0
(2) d(p,q) = d(q,p)
ist dies auch kein Problem.
Nun bin ich bei der Dreiecksungleichung
Ich habe die Dreiecksungleichung mit einer Fallunterscheidung gemacht.
d*: min(1, d(p,q)) <= d*: min(1,d(p,r) + d*: min (1,d(r,q))
für die jeweiligen Minima.

Jetzt kam dabei ab und an raus dass die linke Seite nicht kleiner oder gleich der rechten Seite sein kann
(z.B. min(1,d(p,q)) = 1, min(1, d(p,r)) = 1, min(1, d(r,q)) = d(r,q)
=> 1 !< 1 + d(r,q), da d(r,q) >= 0 und d(r,q) < 1 ist (sonst wäre es ja kein Minimum)

Nun die Frage:
Wenn ich für eine Dreiecksungleichung eine Fallunterscheidung durchführe, müssen dann alle Fälle wahr sein, damit die Dreiecksungleichung erfüllt ist und damit d* ein metrischer Raum ist oder genügt es, wenn ein Axiom der Dreiecksungleichung gilt?

Ich hoffe meine Frage/mein Problem ist klar geworden.

Grüße

        
Bezug
Dreiecksungl. von metr. Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Mi 20.04.2011
Autor: Mousegg

Hallo,
die bedingung besagt [mm] d*(p,q)\le [/mm]  d*(p,r)+d*(r,q) wenn also in einem Fall d*(p,q)< d*(p,r)+d*(r,q) gilt und im anderen Glecheit so ist dies kein Widerspruch zu Bedingung , sondern zeigt ja gerade das sie erfüllt ist.
Es gibt bestimmt p,q für die der erste Fall gilt und bestimmte für die der zweite gilt also gilt insgesamt [mm] \le. [/mm]
So würde ich es zumindest erklären.

viele Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de