www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Dreiecksungleichung,euklidisch
Dreiecksungleichung,euklidisch < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecksungleichung,euklidisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Mo 09.03.2015
Autor: sissile

Aufgabe
Im Heuser, Lehrbuch der Analysis 1(S.98, Ende Kapitel 12) steht:
..und definieren den Abstand der "Punkte" x,y [mm] \in \IR^n [/mm] durch
[mm] d(x,y):=(\sum_{k=1}^n (x_k-y_k)^2)^{\frac{1}{2}}. [/mm]
Nun stehen wir aber vor der Aufgabe zu prüfen, ob dieser Abstand in dem Sinne "vernünftig" ist, daß er den metrischen Axiomen (M1) bis (M3) genügt. Das ist in der Tat der Fall: (M1) und (M2) sind trivialerweise erfüllt, die Dreiecksungleichung (M3) ist aber nichts anderes als (12.2)

Unter 12.2 steht die Ungleichung zwischen arithmetischen und geometrischen Mittel:
[mm] \sqrt[n]{a_1*...*a_n} \le \frac{a_1 +...+a_n}{n} (a_1,..,a_n \ge [/mm] 0).

Was hat die Ungleichung zwischen arithmetischen und geometrischen Mittel mit der Dreiecksungleichung zu tun?

Hallo,
Die Dreiecksungleichung: [mm] $\forall [/mm] x,z,y [mm] \in \IR^n [/mm] : [mm] d(x,z)\le [/mm] d(x,y)+d(y,z)$

LG,
sissi

        
Bezug
Dreiecksungleichung,euklidisch: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mo 09.03.2015
Autor: steppenhahn

Hallo sissile,

> Im Heuser, Lehrbuch der Analysis 1(S.98, Ende Kapitel 12)
> steht:
>  ..und definieren den Abstand der "Punkte" x,y [mm]\in \IR^n[/mm]
> durch
>  [mm]d(x,y):=(\sum_{k=1}^n (x_k-y_k)^2)^{\frac{1}{2}}.[/mm]
>  Nun
> stehen wir aber vor der Aufgabe zu prüfen, ob dieser
> Abstand in dem Sinne "vernünftig" ist, daß er den
> metrischen Axiomen (M1) bis (M3) genügt. Das ist in der
> Tat der Fall: (M1) und (M2) sind trivialerweise erfüllt,
> die Dreiecksungleichung (M3) ist aber nichts anderes als
> (12.2)
>  
> Unter 12.2 steht die Ungleichung zwischen arithmetischen
> und geometrischen Mittel:
>  [mm]\sqrt[n]{a_1*...*a_n} \le \frac{a_1 +...+a_n}{n} (a_1,..,a_n \ge[/mm]
> 0).
>  
> Was hat die Ungleichung zwischen arithmetischen und
> geometrischen Mittel mit der Dreiecksungleichung zu tun?



Schau noch mal in dein Buch. Gemeint ist nicht der Abschnitt 12.2, sondern die Gleichung mit der Nummer (12.2). Das ist die Minkowskische Ungleichung, und die entspricht tatsächlich genau der Dreiecksungleichung.

Wie du aber auch im Heuser im Abschnitt 12.2 und 12.3 lesen kannst, kann man aus der Ungleichung vom geometrischen und arithmetischen Mittel erst die Cauchy-Schwarz-Ungleichung und dann die Minkowskische Ungleichung folgern, woraus dann sofort die Dreiecksungleichung folgt.


Viele Grüße,
Stefan

Bezug
                
Bezug
Dreiecksungleichung,euklidisch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Di 10.03.2015
Autor: sissile

Verstehe, vielen Dank.
LG,
sissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de