Duale Basis < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:25 So 18.10.2009 | Autor: | Pacapear |
Hallo zusammen!
Wir haben hier in der Vorlesung so eine Art Herleitung für die duale Basis, aber irgendwie versteh ich nur Bahnhof.
Als erstes hat man eine Basis [mm] $v_1,...,v_n \in [/mm] V$ gegeben und eine lineare Abbildung [mm] $f:V\to [/mm] K$. Die Bilder der Basisvektoren werden wie folgt bezeichnet: [mm] $f(v_i)=\alpha_i \in [/mm] K$ für $i=1,...,n$. Nun wird gesagt, dass dadurch f eindeutig bestimmt ist (da [mm] v_1,...,v_n [/mm] Basis, f linear):
[mm] v=\summe_{i=1}^{n}a_iv_i \Rightarrow f(v)=\summe_{i=1}^{n}a_if(v_i)=\summe_{i=1}^{n}a_i\alpha_i [/mm] (*)
Diese Rechnung verstehe ich. Was ich mich nun aber frage, was ist, wenn zwei Basisvektoren auf das gleiche [mm] a_i [/mm] abgebildet werden, also [mm] f(v_i)=\alpha_i [/mm] und [mm] f(v_j)=\alpha_j [/mm] mit [mm] \alpha_i=\alpha_j. [/mm] Ist f dann immer noch eindeutig bestimmt?
Dann haben wir einen "Umgekehrt-Absatz". Dort steht, das für jedes n-Tupel [mm] $\alpha_1,...,\alpha_n \in [/mm] K$ genau eine Linearform $f:V [mm] \to [/mm] K$ existiert mit [mm] f(v_i)=\alpha_i. [/mm] [Ich denke, es müsste heißen n-Tupel [mm] $(\alpha_1,...,\alpha_n) \in K^n$ [/mm] mit [mm] $\alpha_1,...,\alpha_n \in [/mm] K$, ich bin aber da nicht sicher.] Als Definition benutzt man (*) Auf diese Weise findet man zu den Tupeln $(1,0,...,0) [mm] \in K^n,...,(0,...,0,1) \in K^n$ [/mm] die duale Basis [mm] $v_1^*,...,v_n^* \in [/mm] V*$.
Explizit: [mm] v_i'(v_j)=\delta_{ij}
[/mm]
Nachsatz: Falls f [mm] \in [/mm] V* mit [mm] f(v_i)=\alpha_i [/mm] , dann gilt [mm] f=\summe_{i=1}^{n}\alpha_iv_i
[/mm]
Diesen Umgekehrt-Absatz versteh ich gar nicht. Wenn ich so ein n-Tupel habe, warum kann ich aus (*) folgern, dass es genau eine Linearform $f:V [mm] \to [/mm] K$ mit [mm] f(v_i)=\alpha_i [/mm] gibt? Und wieso komme ich für sie speziellen n-Tupel (den Einheitstupeln) auf die duale Basis?
Den Nachsatz verstehe ich auch gar nicht. Zum einen verstehe ich die Aussage nicht so ganz, und auch nicht, wie man darauf kommt. Und ich dachte die ganze Zeit schon, dass f aus dem Dualraum V* kommt, weil der Dualraum ist ja $Hom(V,K)$, also der Raum aller linearen Abbildungen von V nach K, und eine solche Abbildung ist doch f schon von Anfang an...
Kann ich die duale Basis mit der expliziten Formel immer dann bestimmen, wenn ich die Basis [mm] v_1,...,v_n [/mm] von V kenne? Kann ich aus dieser Formel auch die Basis [mm] v_1,...,v_n [/mm] von V erhalten, wenn ich die duale Basis kenne?
Was genau muss ich mir unter dieser dualen Basis eigentlich vorstellen? [mm] v_i' [/mm] an der Stelle [mm] v_j [/mm] ist entweder 0 oder 1, aber ich kann mir da irgendwie nix drunter vorstellen
Kennt sich jemand mit diesem Thema aus?
Danke!
LG, Nadine
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:07 So 18.10.2009 | Autor: | rainerS |
Hallo Nadine!
> Wir haben hier in der Vorlesung so eine Art Herleitung für
> die duale Basis, aber irgendwie versteh ich nur Bahnhof.
>
> Als erstes hat man eine Basis [mm]v_1,...,v_n \in V[/mm] gegeben und
> eine lineare Abbildung [mm]f:V\to K[/mm]. Die Bilder der
> Basisvektoren werden wie folgt bezeichnet: [mm]f(v_i)=\alpha_i \in K[/mm]
> für [mm]i=1,...,n[/mm]. Nun wird gesagt, dass dadurch f eindeutig
> bestimmt ist (da [mm]v_1,...,v_n[/mm] Basis, f linear):
>
> [mm]v=\summe_{i=1}^{n}a_iv_i \Rightarrow f(v)=\summe_{i=1}^{n}a_if(v_i)=\summe_{i=1}^{n}a_i\alpha_i[/mm]
> (*)
>
> Diese Rechnung verstehe ich. Was ich mich nun aber frage,
> was ist, wenn zwei Basisvektoren auf das gleiche [mm]a_i[/mm]
> abgebildet werden, also [mm]f(v_i)=\alpha_i[/mm] und [mm]f(v_j)=\alpha_j[/mm]
> mit [mm]\alpha_i=\alpha_j.[/mm] Ist f dann immer noch eindeutig
> bestimmt?
Ja, aber nicht mehr injektiv.
Geh die Frage umgekehrt an: Angenommen, es gäbe es zwei lineare Funktionen $f$ und $g$, sodass [mm] $f(v_i)=\alpha_i$ [/mm] und [mm] $g(v_i)=\alpha_i$. [/mm] Daraus folgt aber
[mm] f(v) = \summe_{i=1}^{n}a_if(v_i)=\summe_{i=1}^{n}a_i\alpha_i=\summe_{i=1}^{n}a_ig(v_i)=g(v) [/mm]
Also legen die Bedingungen [mm]f(v_i)=\alpha_i[/mm] die Funktionswerte von $f$ eindeutig fest, und nur darum geht es.
Wenn nun [mm] $\alpha_i=\alpha_j$, [/mm] dann gibt es mehrere unterschiedliche [mm] $v_1\not=v_2$ [/mm] mit [mm] $f(v_1)=f(v_2)$.
[/mm]
>
> Dann haben wir einen "Umgekehrt-Absatz". Dort steht, das
> für jedes n-Tupel [mm]\alpha_1,...,\alpha_n \in K[/mm] genau eine
> Linearform [mm]f:V \to K[/mm] existiert mit [mm]f(v_i)=\alpha_i.[/mm] [Ich
> denke, es müsste heißen n-Tupel [mm](\alpha_1,...,\alpha_n) \in K^n[/mm]
> mit [mm]\alpha_1,...,\alpha_n \in K[/mm], ich bin aber da nicht
> sicher.] Als Definition benutzt man (*) Auf diese Weise
> findet man zu den Tupeln [mm](1,0,...,0) \in K^n,...,(0,...,0,1) \in K^n[/mm]
> die duale Basis [mm]v_1^*,...,v_n^* \in V*[/mm].
> Explizit:
> [mm]v_i'(v_j)=\delta_{ij}[/mm]
>
> Nachsatz: Falls f [mm]\in[/mm] V* mit [mm]f(v_i)=\alpha_i[/mm] , dann gilt
> [mm]f=\summe_{i=1}^{n}\alpha_iv_i[/mm]
>
> Diesen Umgekehrt-Absatz versteh ich gar nicht. Wenn ich so
> ein n-Tupel habe, warum kann ich aus (*) folgern, dass es
> genau eine Linearform [mm]f:V \to K[/mm] mit [mm]f(v_i)=\alpha_i[/mm] gibt?
Wieder dieselbe Überlegung: Angenommen, es gäbe zwei Linearformen $f$, $g$. Nach Voraussetzung ist [mm]f(v_i)=\alpha_i[/mm] und [mm]g(v_i)=\alpha_i[/mm]. Aus der Definition (*) folgt aber sofort, dass $f(v)=g(v)$ für alle [mm] $v\in [/mm] V$. Also gibt es in Wirklichkeit nur eine eindeutige Linearform mit [mm]f(v_i)=\alpha_i[/mm].
> Und wieso komme ich für sie speziellen n-Tupel (den
> Einheitstupeln) auf die duale Basis?
Das ist die Definition der dualen Basis. Wegen der eben definierten Eindeutigkeit der Linearformen sind die Linearformen $v'_i$ durch die Gleichungen [mm] $v_i'(v_j)=\delta_{ij}$ [/mm] eindeutig bestimmt. Es bleibt noch zu zeigen, dass das System [mm] $(v'_1,\dots,v'_n)$ [/mm] eine Basis des Dualraums ist.
> Den Nachsatz verstehe ich auch gar nicht.
Das ist die Darstellung der Linearform f in der Basis [mm] $(v'_1,\dots,v'_n)$. [/mm] Wenn [mm] $f(v_i) [/mm] = [mm] \alpha_i$ [/mm] gegeben ist, dann ist ja $f$ eindeutig bestimmt. Wenn ich also eine Linearkombination
[mm] \Lambda = \summe_{j=1}^n \lambda_j v'_j [/mm]
der $v'_i$ angeben kann, die auch die Bedingung [mm] $\Lambda(v_i) [/mm] = [mm] \alpha_i$ [/mm] erfüllt, dann muss [mm] $f=\Lambda$ [/mm] sein.
Nun ist
[mm] \Lambda(v_i) = \summe_{j=1}^n \lambda_j v'_j(v_i) = \summe_{j=1}^n \lambda_j \delta_{ij} = \lambda_i [/mm]
Also ist [mm] $\lambda_i [/mm] = [mm] \alpha_i$ [/mm] und
[mm] f = \summe_{j=1}^n \alpha_j v'_j [/mm]
> Zum einen
> verstehe ich die Aussage nicht so ganz, und auch nicht, wie
> man darauf kommt. Und ich dachte die ganze Zeit schon, dass
> f aus dem Dualraum V* kommt, weil der Dualraum ist ja
> [mm]Hom(V,K)[/mm], also der Raum aller linearen Abbildungen von V
> nach K, und eine solche Abbildung ist doch f schon von
> Anfang an...
>
> Kann ich die duale Basis mit der expliziten Formel immer
> dann bestimmen, wenn ich die Basis [mm]v_1,...,v_n[/mm] von V kenne?
> Kann ich aus dieser Formel auch die Basis [mm]v_1,...,v_n[/mm] von V
> erhalten, wenn ich die duale Basis kenne?
>
> Was genau muss ich mir unter dieser dualen Basis eigentlich
> vorstellen? [mm]v_i'[/mm] an der Stelle [mm]v_j[/mm] ist entweder 0 oder 1,
> aber ich kann mir da irgendwie nix drunter vorstellen
Im n-dimensionalen euklidischen Vektorraum kannst du dir die Vektoren als Spaltenvektoren und die dualen Vektoren als Zeilenvektoren vorstellen. Die Anwendung einer Zeile auf eine Spalte ist gerade das Skalarprodukt. Diese Überlegung lässt sich allerdings nicht auf beliebige Vektorräume übertragen.
Viele Grüße
Rainer
|
|
|
|