www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - "Durchmesser" eines Dreiecks
"Durchmesser" eines Dreiecks < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"Durchmesser" eines Dreiecks: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Mo 03.12.2012
Autor: samara

Aufgabe
Sei [mm] \Delta [/mm] das von [mm] z_{0},z_{1},z_{2}\in \IC [/mm] aufgespannte Dreieck, d.h. [mm] \Delta:=conv\{z_{0},z_{1},z_{2}\}:=\{\summe_{k=0}^{2}t_{k}z_{k} | \summe_{k=0}^{2}t_{k}=1, t_{k}\ge0\} [/mm]
Ferner bezeichnen wir mit [mm] diam(\Delta):=max\{|z-w| | z,w\in\Delta\} [/mm] den Durchmesser von [mm] \Delta. [/mm]
Zeigen Sie die folgenden Aussagen:

(a) Für alle [mm] z,w\in\Delta [/mm] gilt [mm] |z-w|\le max\{|z_{0}-w|,|z_{1}-w|,|z_{2}-w|\} [/mm]

(b) [mm] diam(\Delta)=max\{|z_{0}-z_{1}|,|z_{1}-z_{2}|,z_{2}-z_{0}|\} [/mm]


Hallo! :)

Mein Problem bei der Aufgabe ist folgendes: bei der (a) habe ich nur eine zu schwache Abschätzung herausbekommen, nämlich

[mm] |z-w|=|t_{0}z_{0}+t_{1}z_{1}+t_{2}z_{2}-w|\le|z_{0}+z_{1}+z_{2}-w|\le|3*max\{z_{0},z_{1},z_{2}\}-w| [/mm]

begründet durch [mm] t_{k}z_{k} \le z_{k}, [/mm] da [mm] t_{k}\le1. [/mm]
Ist diese überhaupt richtig, oder muss ich da ganz anders rangehen?

Die (b) habe ich anschaulich zwar verstanden (denke ich), kann dies aber nicht mathematisch formulieren. Sie besagt doch im Prinzip nur, dass die Entfernung von zwei beliebigen Punkten auf dem Dreieck kleiner sein muss als die größte "Seitenlänge" des Dreiecks...?

Vielen Dank schonmal für eure Hilfe! :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


edit: Habe die Aufgabenstellung verbessert, da habe ich wohl geschlafen, tut mir leid. :(

        
Bezug
"Durchmesser" eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Di 04.12.2012
Autor: fred97


> Sei [mm]\Delta[/mm] das von [mm]z_{0},z_{1},z_{2}\in \IC[/mm] aufgespannte
> Dreieck, d.h.
> [mm]\Delta:=conv\{z_{0},z_{1},z_{2}\}:=\{\summe_{k=0}^{2}t_{k}z_{k} | \summe_{k=0}^{2}t_{k}=1, t_{k}\ge0\}[/mm]
>  
> Ferner bezeichnen wir mit [mm]diam(\Delta):=max\{|z-w| | z,w\in\Delta\}[/mm]
> den Durchmesser von [mm]\Delta.[/mm]
>  Zeigen Sie die folgenden Aussagen:
>  
> (a) Für alle [mm]z,w\in\Delta[/mm] gilt [mm]|z-w|\le max\{|z_{0}-w|,|z_{1}-w|,|z_{2}-w|\}[/mm]
>  
> (b)
> [mm]diam(\Delta)=max\{|z_{0}-z_{0}|,|z_{0}-z_{0}|,z_{0}-z_{0}|\}[/mm]

Hä ? [mm] =max\{|z_{0}-z_{0}|,|z_{0}-z_{0}|,z_{0}-z_{0}|\}=0 [/mm] !


Also, wie soll es lauten ?


>  Hallo! :)
>  
> Mein Problem bei der Aufgabe ist folgendes: bei der (a)
> habe ich nur eine zu schwache Abschätzung herausbekommen,
> nämlich
>  
> [mm]|z-w|=|t_{0}z_{0}+t_{1}z_{1}+t_{2}z_{2}-w|\le|z_{0}+z_{1}+z_{2}-w|\le|3*max\{z_{0},z_{1},z_{2}\}-w|[/mm]
>  
> begründet durch [mm]t_{k}z_{k} \le z_{k},[/mm] da [mm]t_{k}\le1.[/mm]
>  Ist diese überhaupt richtig, oder muss ich da ganz anders
> rangehen?

Das ist alles grober Unfug !!!!   Auf [mm] \IC [/mm] haben wir keine Ordnung !

FRED

>  
> Die (b) habe ich anschaulich zwar verstanden (denke ich),
> kann dies aber nicht mathematisch formulieren. Sie besagt
> doch im Prinzip nur, dass die Entfernung von zwei
> beliebigen Punkten auf dem Dreieck kleiner sein muss als
> die größte "Seitenlänge" des Dreiecks...?
>  
> Vielen Dank schonmal für eure Hilfe! :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
"Durchmesser" eines Dreiecks: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Di 04.12.2012
Autor: samara

Das stimmt, die Aufgabe b) wie ich sie da geschrieben habe ist Schwachsinn, habe das mal korrigiert.

Bezug
                
Bezug
"Durchmesser" eines Dreiecks: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:51 Di 04.12.2012
Autor: Marcel

Hallo,

> Das stimmt, die Aufgabe b) wie ich sie da geschrieben habe
> ist Schwachsinn, habe das mal korrigiert.

Fred meinte auch, dass Deine Abschätzung

> begründet durch $ [mm] t_{k}z_{k} \le z_{k}, [/mm] $ da $ [mm] t_{k}\le1. [/mm] $

"Schwachsinn" ist. Wie gesagt: Auf [mm] $\IC$ [/mm] existiert keine Ordnung. Oder hast
Du schonmal gesehen, dass $1+i [mm] \le 3+5i\,$ [/mm] wäre?

Übrigens: Überlege mal, wenn dem doch so wäre, auf [mm] $\IC$ [/mm] sei also durch
[mm] $\le$ [/mm] eine Ordnung gegeben. Quadratzahlen (eines jeden geordneten)
Körpers sind dann stets [mm] $\ge 0\,.$ [/mm] (Beweis?) Andererseits ist [mm] $i^2=... [/mm] < [mm] 0\,.$ [/mm]
(Alternativ kann man auch einfach zeigen: Es kann weder $i [mm] \ge 0\,,$ [/mm]
noch $i [mm] \le [/mm] 0$ sein...)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de