www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Durchschnitt offener Mengen
Durchschnitt offener Mengen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Durchschnitt offener Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Mi 30.10.2013
Autor: Orchis

Hallo liebe Matheraumler,
ich habe da eine Frage, die hoffentlich nicht zu einfach ist, als dass sie keiner beachtet...und zwar: Ein Axiom für eine Topologie lautet ja, dass der Durchschnitt von Mengen der Topologie wieder eine Menge der Topologie ist. Warum reicht es aus den Schnitt von lediglich 2 Mengen zu betrachten? Ich denke, dass es ein Induktionsargument ist, oder? Also.
Seien A und B offen (bzgl. Topologie).
Angenommen wir zeigen also, dass der Schnitt dieser zwei Mengen offen ist:
n=2: [mm] A\capBB [/mm] offen
Induktionsschritt: n [mm] \mapsto [/mm] n+1
[mm] \bigcap_{i=1}^{n+1}A_i [/mm] = [mm] \bigcap_{i=1}^{n}A_i \cap A_{n+1} [/mm] und da nach Induktionsvorraussetzung [mm] \bigcap_{i=1}^{n}A_i [/mm] in der Topologie liegt, sowie [mm] \cap A_{n+1} [/mm] offen in der Topologie ist, dass der Schnitt dieser zwei Mengen aus der Topologie (quasi Fall n=2...) wieder in der Topologie liegt.
Das ist jetzt nicht richtig aufgeschrieben, aber ist die Idee so richtig?
Vielen Dank schonmal im Vorhinein!

        
Bezug
Durchschnitt offener Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Mi 30.10.2013
Autor: fred97


> Hallo liebe Matheraumler,
>  ich habe da eine Frage, die hoffentlich nicht zu einfach
> ist, als dass sie keiner beachtet...und zwar: Ein Axiom
> für eine Topologie lautet ja, dass der Durchschnitt von
> Mengen der Topologie wieder eine Menge der Topologie ist.


Vorsicht ! es handelt sich um den Durschnitt endlich vieler mengen der Topologie !

Der Durchscnit von unendlich vielen offenen Mengen ist im allgemeinen nicht offen. Beispiel ?

> Warum reicht es aus den Schnitt von lediglich 2 Mengen zu
> betrachten? Ich denke, dass es ein Induktionsargument ist,
> oder?

Genau.

> Also.
> Seien A und B offen (bzgl. Topologie).
>  Angenommen wir zeigen also, dass der Schnitt dieser zwei
> Mengen offen ist:
>  n=2: [mm]A\capBB[/mm] offen
>  Induktionsschritt: n [mm]\mapsto[/mm] n+1
>  [mm]\bigcap_{i=1}^{n+1}A_i[/mm] = [mm]\bigcap_{i=1}^{n}A_i \cap A_{n+1}[/mm]
> und da nach Induktionsvorraussetzung [mm]\bigcap_{i=1}^{n}A_i[/mm]
> in der Topologie liegt, sowie [mm]\cap A_{n+1}[/mm] offen in der
> Topologie ist, dass der Schnitt dieser zwei Mengen aus der
> Topologie (quasi Fall n=2...) wieder in der Topologie
> liegt.
>  Das ist jetzt nicht richtig aufgeschrieben, aber ist die
> Idee so richtig?

ja

FRED


> Vielen Dank schonmal im Vorhinein!


Bezug
                
Bezug
Durchschnitt offener Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Do 31.10.2013
Autor: Orchis

Vielen Dank, dass du dir Zeit genommen hast! :)
Richtig, dass es endlich viele sein müssen habe ich vergessen hinzuschreiben! Als Beispiel hatten wir z.B. einmal in der Vorlesung
[mm] \bigcap_{n\in\IN}^{} (0,1+\bruch{1}{n}) [/mm] = (0,1], was aber weder abgeschlossen, noch offen (bzgl. der natürlichen Topologie auf [mm] \IR [/mm] ist! D.h. der Durchschnitt von unendlich vielen offenen Mengen muss nicht zwangsläufig offen sein.

Bezug
                        
Bezug
Durchschnitt offener Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 Do 31.10.2013
Autor: fred97


> Vielen Dank, dass du dir Zeit genommen hast! :)
>  Richtig, dass es endlich viele sein müssen habe ich
> vergessen hinzuschreiben! Als Beispiel hatten wir z.B.
> einmal in der Vorlesung
>  [mm]\bigcap_{n\in\IN}^{} (0,1+\bruch{1}{n})[/mm] = (0,1], was aber
> weder abgeschlossen, noch offen (bzgl. der natürlichen
> Topologie auf [mm]\IR[/mm] ist! D.h. der Durchschnitt von unendlich
> vielen offenen Mengen muss nicht zwangsläufig offen sein.


So ist es.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de