www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - E-Funktion lösen
E-Funktion lösen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E-Funktion lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Fr 14.04.2006
Autor: NickyKapelle

Aufgabe
Lösen Sie die Gleichung   [mm] e^{2x}+e^x-2=0 [/mm]

Hey!
Hab leider keine Ahnung, wie ich diese Gleichung so auflösen kann, dass ich für x eine Lösung heraus bekommen. Könnte mir das jedmand erklären. Wäre super.
Danke im Vorraus.
Liebe Grüße Nicole


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
E-Funktion lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Fr 14.04.2006
Autor: sirprize

Hi Nicole,

das Stichwort zur Lösung dieser Aufgabe nennt sich Substitution. Findest du heraus, was du substituieren musst?
Falls du nach einem bisschen Nachdenken nicht drauf kommst, meld dich nochmal.

Viele Grüße,
Michael

Bezug
                
Bezug
E-Funktion lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Fr 14.04.2006
Autor: Blacky

Die einzige Lösung ist x=0, stimmts ?!

Bezug
                
Bezug
E-Funktion lösen: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Fr 14.04.2006
Autor: NickyKapelle

Na Substitution haben wir im Unterricht zwar auch schon gehabt, aber nur im Zusammenhang mit dem lösen von Integralen (also Stammfunktionen ausrechnen). Wie funktioniert das denn dann bei dieser Aufgabe? Wäre schön wenn mir jemand wenigsten den Lösungsansatz verrät.
LG Nicole

Bezug
                        
Bezug
E-Funktion lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Fr 14.04.2006
Autor: sirprize

Hi Nicole,

die Substitution funktioniert genau so wie in der 8. (?) Klasse, wo man Gleichungen der Form [mm] $a*x^4 [/mm] + [mm] b*x^2 [/mm] + c = 0$ lösen musste. Damals hat man mit [mm] $x^2 [/mm] = z$ substituiert und dann [mm] $a*z^2 [/mm] + b*z + c = 0$ gelöst. Diesmal ist es dasselbe, nur dass du [mm] $e^x [/mm] = z$ substituierst.
Alles klar?

Viele Grüße,
Michael

Bezug
        
Bezug
E-Funktion lösen: Lösung
Status: (Antwort) fertig Status 
Datum: 13:32 Fr 14.04.2006
Autor: Jette87

Du ersetzt [mm] e^{x} [/mm] durch z (oder eine andere beliebige Variable)

-> z² + z - 2 = 0
das kannst du sicherlich lösen ;)

Und dann bekommst du Werte für z raus und musst diese dann wieder ersetzen durch [mm] e^{x}. [/mm] Probier das mal ;).

Bezug
                
Bezug
E-Funktion lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 Fr 14.04.2006
Autor: NickyKapelle

Hey!
Hab das jetzt mit dem z probiert und habe für x1 -2 raus und für x2 1. Ist das jetzt richtig?
Danke für die schnelle Antwort.

Bezug
                        
Bezug
E-Funktion lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Fr 14.04.2006
Autor: Jette87


> Hey!
>  Hab das jetzt mit dem z probiert und habe für
> x1 -2 raus und für x2 1. Ist das
> jetzt richtig?
>  Danke für die schnelle Antwort.

Du hast für z 1 und -2 raus, das musst du nun noch resubstituieren mit [mm] e^{x}, [/mm] also:
[mm] e^{x} [/mm] = 1 und [mm] e^{x} [/mm] = -2
Und dann eben die Ergebnisse für x rausbekommen ;).
Keine Ursache!

Bezug
                                
Bezug
E-Funktion lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Fr 14.04.2006
Autor: NickyKapelle

Ja natürlich. Hab mal wieder nicht weit genug gedacht!
Danke!
[anbet]

Bezug
                                
Bezug
E-Funktion lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Fr 14.04.2006
Autor: NickyKapelle

Jetz noch mal kurze meine Lösung. (Nur damit ich mir auch sicher sein kann, dass es jetzt richtig ist)
[mm] e^x=-2 [/mm] (nicht lösbar, da ln-2 nicht möglich ist)
[mm] e^x=1 [/mm]
ln1=0
[mm] e^0=1 [/mm]
(und das nennt man dann resubstituieren?)

x=0 (ist dann die einzigste Lösung)


Bezug
                                        
Bezug
E-Funktion lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Fr 14.04.2006
Autor: Jette87


> Jetz noch mal kurze meine Lösung. (Nur damit ich mir auch
> sicher sein kann, dass es jetzt richtig ist)
>  [mm]e^x=-2[/mm] (nicht lösbar, da ln-2 nicht möglich ist)
>  [mm]e^x=1[/mm]
> ln1=0
>  [mm]e^0=1[/mm]
>  (und das nennt man dann resubstituieren?)
>  
> x=0 (ist dann die einzigste Lösung)

Ja das ist die richtige Lösung.
Resubstituieren nennt man den Vorgang, wenn du z wieder durch [mm] e^{x} [/mm] ersetzt!. Erst hast du [mm] e^{x} [/mm] durch z ja substituiert und dann hast du das wieder rückgängig gemacht, also resubstituiert!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de