www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - EX und V(X) einer Normalvert.
EX und V(X) einer Normalvert. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

EX und V(X) einer Normalvert.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 21.01.2006
Autor: Fry

Aufgabe
Bestimmen Sie Erwartungswert und Varianz einer [mm] N(\mu,\sigma)-verteilten [/mm] Zufallsgröße.

Das Integral der Gaußfunktion kann man ja mit gewöhnlichen Mitteln nicht bestimmen. Deshalb hab ich eine Funktionsuntersuchung der Gaußfunktion auf  Maxima durchgeführt und es ergibt sich als Maximum [mm] \mu. [/mm] Darf ich dann daraus schlußfolgern EX = [mm] \mu [/mm] ? Wie siehts denn mit der Varianz aus ?
Kann ich die über V(X) = EX² - (EX)² bestimmen ? Wie kann ich EX²berechnen ?
Danke :)
Fry

        
Bezug
EX und V(X) einer Normalvert.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Sa 21.01.2006
Autor: Astrid

Hallo Fry,

zunächst mal etwas Grundsätzliches:
Wer fast 40 Frageartikel hat - wie du - der sollte wissen, dass hier im Forum eine Begrüßung gern gesehen wird. Außerdem freut man sich als freiwillig Helfender über Feedback zu einer Antwort - das ist doch nur fair, oder nicht? :-)

> Bestimmen Sie Erwartungswert und Varianz einer
> [mm]N(\mu,\sigma)-verteilten[/mm] Zufallsgröße.
>  Das Integral der Gaußfunktion kann man ja mit gewöhnlichen
> Mitteln nicht bestimmen. Deshalb hab ich eine
> Funktionsuntersuchung der Gaußfunktion auf  Maxima
> durchgeführt und es ergibt sich als Maximum [mm]\mu.[/mm] Darf ich
> dann daraus schlußfolgern EX = [mm]\mu[/mm] ?

Nein, das Maximum gibt dir keinerlei Aussage über den Erwartungswert. (siehe z.B. die []Exponentialverteilung.

Aber: Wenn deine Dichtefunktion symmetrisch zu einem Wert (z.B. [mm] $\mu$?) [/mm] verteilt ist, dann gilt [mm] $E(X)=\mu$. [/mm] (Vorausgesetzt der Erwartungswert existiert.) Du mußt zeigen:

[mm] $f(\mu+x)=f(\mu-x)$ [/mm] für alle $x [mm] \in \IR$. [/mm]

> Wie siehts denn mit
> der Varianz aus ?
>  Kann ich die über V(X) = EX² - (EX)² bestimmen ? Wie kann
> ich EX²berechnen ?


Besser du berechnest $var(X)$ direkt über das Integral mit dem Wissen, dass

[mm]\int_{-\infty}^{\infty}x^2 \cdot e^{-\bruch{x^2}{2}} \, dx = \wurzel{2 \pi}[/mm]
und durch Substitution von:

[mm] $u(x)=\bruch{x-\mu}{\sigma}$. [/mm]

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de