www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - E(X) berechnen
E(X) berechnen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E(X) berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mi 08.01.2014
Autor: pc_doctor

Bei einem Würfel haben die Augenzahlen ( 1, 2, 3, 4, 5, 6) Wahrscheinlichkeiten von [mm] \bruch{1}{6} [/mm] , [mm] \bruch{1}{2}, \bruch{1}{12}, \bruch{1}{12}, \bruch{1}{12}, \bruch{1}{12} [/mm]

Bei gerader Augenzahl bekomme ich 1€. Andernfalls muss ich bei ungerader Augenzahl die Augenzahl in € bezahlen. Was ist der erwartete Gewinn ? [mm] <\task> [/mm]

Hallo,
ich habe mir für diese Aufgabe eine kleine Tabelle gezeichnet.
Für die Augenzahl 1 muss ich 1 Euro bezahlen,
für die Augenzahl 2 kriege ich 1 Euro,
für die Augenzahl 3 muss ich 3 Euro bezahlen,
für die Augenzahl 4 kriege ich 1 Euro,
für die Augenzahl 5 muss ich 5 Euro bezahlen,
für die Augenzahl 6 kriege ich 1 Euro.


Für Augenzahl 1 beträgt die Wahrscheinlichkeit [mm] \bruch{1}{6} [/mm]

Für Augenzahl 2 beträgt die Wahrscheinlichkeit [mm] \bruch{1}{2} [/mm]

Für Augenzahl 3 beträgt die Wahrscheinlichkeit [mm] \bruch{1}{12} [/mm]

Für Augenzahl 4 beträgt die Wahrscheinlichkeit [mm] \bruch{1}{12} [/mm]

Für Augenzahl 5 beträgt die Wahrscheinlichkeit [mm] \bruch{1}{12} [/mm]

Für Augenzahl 6 beträgt die Wahrscheinlichkeit [mm] \bruch{1}{12} [/mm]

Jetzt berechne ich E(X) angefangen , von Augenzahl 5 , dann Augenzahl 3 , dann Augenzahl 1, dann Augenzahl 2 , dann Augenzahl 4, dann Augenzahl 6

E(X) = [mm] (-5*\bruch{1}{12}) [/mm] + [mm] (-3*\bruch{1}{12}) [/mm] + (-1* [mm] \bruch{1}{6}) [/mm] + [mm] (1*\bruch{1}{2}) [/mm] + [mm] (1*\bruch{1}{12}) [/mm] + [mm] (1*\bruch{1}{12}) [/mm]
E(X) = [mm] -\bruch{1}{6} [/mm]
Also kein faires Spiel , Verlust für den Spieler.

Ist das richtig ?

Danke im Voraus.

        
Bezug
E(X) berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mi 08.01.2014
Autor: Diophant

Hallo,

> Bei einem Würfel haben die Augenzahlen ( 1, 2, 3, 4, 5,
> 6) Wahrscheinlichkeiten von [mm]\bruch{1}{6}[/mm] , [mm]\bruch{1}{2}, \bruch{1}{12}, \bruch{1}{12}, \bruch{1}{12}, \bruch{1}{12}[/mm]

>

> Bei gerader Augenzahl bekomme ich 1€. Andernfalls muss
> ich bei ungerader Augenzahl die Augenzahl in € bezahlen.
> Was ist der erwartete Gewinn ? [mm]<\task>[/mm]

>

> Hallo,
> ich habe mir für diese Aufgabe eine kleine Tabelle
> gezeichnet.
> Für die Augenzahl 1 muss ich 1 Euro bezahlen,
> für die Augenzahl 2 kriege ich 1 Euro,
> für die Augenzahl 3 muss ich 3 Euro bezahlen,
> für die Augenzahl 4 kriege ich 1 Euro,
> für die Augenzahl 5 muss ich 5 Euro bezahlen,
> für die Augenzahl 6 kriege ich 1 Euro.

>
>

> Für Augenzahl 1 beträgt die Wahrscheinlichkeit
> [mm]\bruch{1}{6}[/mm]

>

> Für Augenzahl 2 beträgt die Wahrscheinlichkeit
> [mm]\bruch{1}{2}[/mm]

>

> Für Augenzahl 3 beträgt die Wahrscheinlichkeit
> [mm]\bruch{1}{12}[/mm]

>

> Für Augenzahl 4 beträgt die Wahrscheinlichkeit
> [mm]\bruch{1}{12}[/mm]

>

> Für Augenzahl 5 beträgt die Wahrscheinlichkeit
> [mm]\bruch{1}{12}[/mm]

>

> Für Augenzahl 6 beträgt die Wahrscheinlichkeit
> [mm]\bruch{1}{12}[/mm]

>

> Jetzt berechne ich E(X) angefangen , von Augenzahl 5 , dann
> Augenzahl 3 , dann Augenzahl 1, dann Augenzahl 2 , dann
> Augenzahl 4, dann Augenzahl 6

>

> E(X) = [mm](-5*\bruch{1}{12})[/mm] + [mm](-3*\bruch{1}{12})[/mm] + (-1*
> [mm]\bruch{1}{6})[/mm] + [mm](1*\bruch{1}{2})[/mm] + [mm](1*\bruch{1}{12})[/mm] +
> [mm](1*\bruch{1}{12})[/mm]
> E(X) = [mm]-\bruch{1}{6}[/mm]
> Also kein faires Spiel , Verlust für den Spieler.

>

> Ist das richtig ?

>

Ja, das ist völlig richtig. [ok]

Je nachdem, in welchem Kontext du diese Aufgabe bearbeiten sollst, solltest bzw. könntest du das aber alles noch viel professionieller und damit kürzer hinschreiben. Aber du musst das selbst entscheiden, ob dies notwendig ist.

Gruß, Diophant

Bezug
                
Bezug
E(X) berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Mi 08.01.2014
Autor: pc_doctor

Hallo Diophant,

danke für deine Antwort.

Wie kann man das Ganze abkürzen ? Es ist für unseren Tutor eigentlich egal , wie wir das machen. Trotzdem würde ich gerne erfahren , wie der andere Weg aussieht. Könntest du das bitte näher erläutern ?

Danke im Voraus.

Bezug
                        
Bezug
E(X) berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Mi 08.01.2014
Autor: Diophant

Hallo pc_doctor,

> Wie kann man das Ganze abkürzen ? Es ist für unseren
> Tutor eigentlich egal , wie wir das machen. Trotzdem würde
> ich gerne erfahren , wie der andere Weg aussieht.


Von einem anderen Weg habe ich nicht gesprochen. Lies gegebene Antworten gründlicher durch (das braucht dann eventuell etwas mehr Zeit...).

> Könntest

> du das bitte näher erläutern ?

Nein, das ist sicherlich nicht mein Job. Es wäre deine Aufgabe, bei einer solchen Frage kurz anzudeuten, in welchem Rahmen ihr das gemacht habt und wie die üblöichen Notationen bei euch sind. Sprich: sollen Wahrscheinlichkeitsräume korrekt aufgeschrieben werden etc. ? Außerdem kann man den ganzen Sermon, den du da oben stehen hast, schon dadurch verkürzen, indem man die ganzen Redundanzen entfernt. Auch das würde halt von deiner Seite aus mehr Gründlichkeit und mehr Zeit erfordern.

Schlussendlich könnte man den Erwartungswert per Summenzeichen notieren, etwa so:

E(X)= [mm] \sum_{I}x_i*P(X=x_i)=-5*\bruch{1}{12}-3*\bruch{1}{12}-5*\bruch{1}{6}+1*\bruch{1}{2}+1*\bruch{1}{12}+1*\bruch{1}{12}=-\bruch{1}{6} [/mm]

Gruß, Diophant 

Bezug
                                
Bezug
E(X) berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 Mi 08.01.2014
Autor: pc_doctor

Hallo,
danke dafür.

Ich hab das wohl ein wenig missverstanden. Du hast natürlich Recht, es würde "mathematischer" aussehen , wenn ich [mm] \omega [/mm] etc. aufschreiben würde. Das werde ich dann noch machen.

Danke für die Antworten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de