www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - E(X) und Var(X) (stetig)
E(X) und Var(X) (stetig) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E(X) und Var(X) (stetig): Ist das so richtig?
Status: (Frage) beantwortet Status 
Datum: 15:02 Mi 05.12.2007
Autor: tillll

Aufgabe
Die Zufallsvariable X sei gleichverteilt auf dem Intervall [2,6].
Bestimmen sie den Erwartungswert und die Varianz von X.  

Ist das so richtig? Reicht das als Antwort? - kam mir recht leicht vor.


E(X) = [mm] \bruch{a+b}{2} [/mm]   ; für a < x <b
--> E(X) = [mm] \bruch{2+6}{2} [/mm] = 4

Var(X) = [mm] \bruch{(b-a)^2}{2} [/mm]   ; für a < x <b
--> Var(X) = [mm] \bruch{(6-2)^2}{2} [/mm] = 8


Danke.
Tilman

        
Bezug
E(X) und Var(X) (stetig): Varianz falsch
Status: (Antwort) fertig Status 
Datum: 15:23 Mi 05.12.2007
Autor: mathmetzsch

Hallo,

wahrscheinlich meinst du die stetige Gleichverteilung. Zumindest lese ich das aus deinen Formeln ab. Dann stimme ich dir also beim Erwartungswert zu. [daumenhoch]

Die Formel für die Varianz lautet aber nach meiner Erinnerung [mm] Var(X)=\bruch{(b-a)^{2}}{12} [/mm] . Also ist deine Varianz in diesem Fall [mm] Var(X)=\bruch{16}{12}=\bruch{4}{3}. [/mm]

Du kannst die Formeln auch []hier noch mal nachlesen!

Beste Grüße
Daniel

Bezug
                
Bezug
E(X) und Var(X) (stetig): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Mi 05.12.2007
Autor: tillll

Bei der Varianz hast du mit der neuen Formel recht (hatte mich da vertan - steht auch so in meiner Formelsammlung ;) )

Wie verstehst du denn die Aufgabenstellung? Eher diskret oder stetig?


Danke und Gruß
Tilman

Bezug
                        
Bezug
E(X) und Var(X) (stetig): Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Mi 05.12.2007
Autor: mathmetzsch

Hallo, also im Betreff steht ja was von stetig. Ansonsten kann man beide Groessen von stetigen und diskreten Variablen berechben. Da musst du vllt. noch mal nachfragen.
LG Daniel

Bezug
                                
Bezug
E(X) und Var(X) (stetig): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 Mi 05.12.2007
Autor: luis52

Hallo,

ich bin mir sehr sicher, dass die stetige Gleichverteiulung gemeint ist.
Schreib in die Loesung hinein: Ich interpretiere die
Aufgabestellung so, dass ...


lg Luis



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de