E berechnen die g&p enthält < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:20 Mo 27.08.2012 | Autor: | ikatih |
Aufgabe | Bestimmen Sie die Hessesche Normalform der Ebene E, die den Punkt [mm] P\vektor{-1 \\ 3\\ 4} [/mm] und die Gerade g: [mm] x=\vektor{-2\\ 1\\2 }+\lambda*\vektor{3 \\ 1\\ 1};\lambda \in \IR [/mm] enthält. |
Hallo,
könnte mir vielleicht ein Tipp geben wie ich hier anfangen kann. Ich kann doch den Richtungsvektor der Gerade als Normalenvektor der Ebene nehmen, da g sowieso in der Ebene liegen soll, ginge das. Ich muss den Normalenvektor normieren und die Hessesche Normalform aufstellen. Jedoch weiß ich nicht wie ich das mit P machen soll, der soll ja auch in der Ebene liegen.
Was ich bisher berechnet habe ist :
[mm] \vektor{3 \\ 1\\ 1}*(\vec{x}- \vektor{-2 \\ 1\\ 2} [/mm] ) so sieht mein Normalenform der Ebene aus
Hessesche Normalenform :
[mm] \bruch{1}{\wurzel{11}}*\vektor{3 \\ 1\\1 }*(\vec{x}- \vektor{-2 \\ 1\\ 2} [/mm] ) stimmt es soweit ??
LG
|
|
|
|
Hallo ikatih,
> Bestimmen Sie die Hessesche Normalform der Ebene E, die den
> Punkt [mm]P\vektor{-1 \\ 3\\ 4}[/mm] und die Gerade g:
> [mm]x=\vektor{-2\\ 1\\2 }+\lambda*\vektor{3 \\ 1\\ 1};\lambda \in \IR[/mm]
> enthält.
> Hallo,
> könnte mir vielleicht ein Tipp geben wie ich hier
> anfangen kann. Ich kann doch den Richtungsvektor der Gerade
> als Normalenvektor der Ebene nehmen, da g sowieso in der
> Ebene liegen soll, ginge das. Ich muss den Normalenvektor
> normieren und die Hessesche Normalform aufstellen. Jedoch
> weiß ich nicht wie ich das mit P machen soll, der soll ja
> auch in der Ebene liegen.
> Was ich bisher berechnet habe ist :
> [mm]\vektor{3 \\ 1\\ 1}*(\vec{x}- \vektor{-2 \\ 1\\ 2}[/mm] ) so
> sieht mein Normalenform der Ebene aus
Das ist die Ebene die nur g enthält.
Wähle als zweiten Richtungsvektor, denjenigen Vektor, der
durch den Aufpunkt der Geraden g zum Punkt P geht.
> Hessesche Normalenform :
> [mm]\bruch{1}{\wurzel{11}}*\vektor{3 \\ 1\\1 }*(\vec{x}- \vektor{-2 \\ 1\\ 2}[/mm]
> ) stimmt es soweit ??
>
> LG
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:48 Mo 27.08.2012 | Autor: | ikatih |
Ich rechne erstmal
[mm] \vektor{-1\\ 3\\4}-\vektor{-2 \\ 1\\2}=\vektor{1 \\ 2\\2}
[/mm]
dann muss ich doch einen Vektor zu finden dessen Skalarprodukt mit ihm gleich 0 ergibt oder??
[mm] \vektor{1 \\ 2\\2}*\vektor{0 \\ -1\\1}=0
[/mm]
den normiere ich und habe dann als Endergebnis:
[mm] \bruch{1}{\wurzel{2}}*\vektor{0 \\ -1\\1}*(\vec{x}-\vektor{-2 \\ 1\\2})
[/mm]
Ist es so richtig??
LG
|
|
|
|
|
Hallo ikatih,
> Ich rechne erstmal
> [mm]\vektor{-1\\ 3\\4}-\vektor{-2 \\ 1\\2}=\vektor{1 \\ 2\\2}[/mm]
>
> dann muss ich doch einen Vektor zu finden dessen
> Skalarprodukt mit ihm gleich 0 ergibt oder??
Nein.
Mit dem berechneten Differnzvektor hast Du doch schon
die gesuchte in Parameterform.
[mm]E: \vec{x}=\vektor{-2\\ 1\\2 }+\lambda\cdot{}\vektor{3 \\ 1\\ 1}+\mu*\vektor{1 \\ 2\\ 2}, \ \lambda, \ \mu \in \IR [/mm]
> [mm]\vektor{1 \\ 2\\2}*\vektor{0 \\ -1\\1}=0[/mm]
> den normiere ich
> und habe dann als Endergebnis:
> [mm]\bruch{1}{\wurzel{2}}*\vektor{0 \\ -1\\1}*(\vec{x}-\vektor{-2 \\ 1\\2})[/mm]
>
> Ist es so richtig??
> LG
>
Gruss
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:01 Mo 27.08.2012 | Autor: | ikatih |
Achso ok =)))
Danke ich habe es jetzt
LG
|
|
|
|