www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Ebene-Punkt-Abstand HNF
Ebene-Punkt-Abstand HNF < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene-Punkt-Abstand HNF: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mo 19.09.2011
Autor: Paivren

Guten Abend!

Heute wurde uns die "Hesse'sche Normalenform" gezeigt und wie man mit ihr Abstände eines Punktes von einer Ebene berechnen kann.

Ich sitze nun schon den ganzen Mittag daran, die Herleitung, die vorgeführt wurde, nachvollziehen zu können, aber irgendwie klappt es nicht.

Die HNF ist ja: [mm] \vec{n_{0}} \* (\vec{x}-\vec{p}) [/mm] = 0

Wie kommt man denn nun darauf, dass man den Abstand der Ebene zu einem Punkt bekommt, wenn ich den Punkt da einsetze?

Da selbst Leute das verstehen, die sonst schlechter in Mathe sind als ich, macht mir das echt zu schaffen!

mfG.

        
Bezug
Ebene-Punkt-Abstand HNF: Antwort
Status: (Antwort) fertig Status 
Datum: 08:46 Di 20.09.2011
Autor: angela.h.b.


> Die HNF ist ja: [mm]\vec{n_{0}} \* (\vec{x}-\vec{p})[/mm] = 0
>  
> Wie kommt man denn nun darauf, dass man den Abstand der
> Ebene zu einem Punkt bekommt, wenn ich den Punkt da
> einsetze?

Hallo,

schauen wir uns zuerst einmal das Skalarprodukt zweier Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] an:

es ist [mm] \vec{a}*\vec{b}=ab*cos(\angle \vec{a},\vec{b}). [/mm]

Nun ist [mm] |b*cos(\angle \vec{a},\vec{b}) [/mm] |die Länge der (orthogonalen) Projektion von [mm] \vec{b} [/mm] auf die durch [mm] \vec{a} [/mm] vorgegebene Gerade,
[mm] \vec{b}_{\vec{a}}=b*cos(\angle \vec{a},\vec{b})*\vec{a} [/mm] ist die Projektion von [mm] \vec{b} [/mm] auf die Gerade in Richtung [mm] \vec{a}. [/mm]

Du kannst es []hier anschauen und nachlesen.

Wenn nun [mm] \vec{a} [/mm] die Länge 1 hat, ist [mm] |\vec{a}*\vec{b}| [/mm] die Länge der Projektion von [mm] \vec{b} [/mm] auf die Gerade in Richtung [mm] \vec{a}. [/mm]

Wenn Du das geschluckt und verdaut hast, schauen wir die HNF an.
Wir betrachten eine Ebene mit Normaleneinheitsvektor [mm] \vec{n_0}, [/mm] welche durch den Punkt P mit Ortsvektor [mm] \vec{p} [/mm] geht und interessieren uns für den Abstand eines Punktes Q mit Ortsvektor [mm] \vec{q} [/mm] zu dieser Ebene.

Die Ebenengleichung in HNF ist [mm] \vec{n_0}*(\vec{x}-\vec{p})=0, [/mm]

<==> [mm] \vec{n_0}*\vec{x}-\vec{n_0}*\vec{p}=0. [/mm]


Der Betrag von [mm] \vec{n_0}*\vec{p} [/mm] ist die Länge der Projektion von [mm] \vec{p} [/mm] auf die zu E senkrechte Gerade durch den Ursprung. Mach Dir dies anhand einer Skizze, auf welcher man E (als Gerade), P, Q und den Ursprung  und die Normale auf E sieht.

Nun setzen wir Q ein und bekommen mit  [mm] \vec{n_0}*\vec{q}-\vec{n_0}*\vec{p} [/mm] die Differenz der Projektionen von P und Q auf die Normale, und damit gerade (mit dem Betrag) den Abstand von Q zur Ebene. Guck dazu Deine Skizze an.

Gruß v. Angela











Bezug
                
Bezug
Ebene-Punkt-Abstand HNF: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Di 15.11.2011
Autor: Paivren

Danke, gut erklärt, ich habs begriffen - hatte mich neulich wieder damit beschäftigt und Deine Antwort zu Hilfe genommen^^

Schönen Abend!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de