www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Ebene
Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Do 28.12.2006
Autor: Phecda

hi bereite mich gerade aufs abi vor. hab deshalb etwas viele fragen
wie viele ebenen durch die punkte A(2|3|4) und B(6|5|16) gibt es, die zum Ursprung den Abstand 2 haben?
bestimmen sie für jede Ebene eine gleichung
irgendwie hab ich absolut kein ansatz
kann jmd helfen
danke mfg

        
Bezug
Ebene: Ansätze
Status: (Antwort) fertig Status 
Datum: 21:49 Do 28.12.2006
Autor: M.Rex

Hallo

Dazu ist es am Einfachsten, sich die Gerade in Normalenform zu konstruieren:

Also: [mm] \vec{n}*\vec{n}=d, [/mm] dann hast du nur drei Variablen.

Für den Normalenvektor n gilt:

[mm] \vec{n}\perp\overrightarrow{AB} [/mm]
[mm] \gdw\vec{n}*\overrightarrow{AB}=0 [/mm]

und es gilt, da A und B auf der Ebene Liegen:

[mm] \vec{n}*\vec{a}=\vec{n}*\vec{b} [/mm]

Und ausserdem

[mm] |\vec{n}|=2 [/mm]

Jetzt hast du drei Bedingungen für [mm] \vec{n}=\vektor{n_{1}\\n_{2}\\n_{3}} [/mm] der ja drei Variablen hat.

Hilft das erstmal weiter?

Marius


Bezug
        
Bezug
Ebene: anderer Ansatz
Status: (Antwort) fertig Status 
Datum: 22:17 Do 28.12.2006
Autor: Loddar

Hallo Phecda!


Verwende hier die Hesse'sche Normalform und setze die gegebenen Punktkoordinaten ein:

[mm] $\vec{n}_0*\vec{p} [/mm] \ = \ d$

[mm] $\Rightarrow$ [/mm]

[mm] $\vektor{n_1\\n_2\\n_3}*\vektor{2\\3\\4} [/mm] \ = \ [mm] 2*n_1+3*n_2+4*n_3 [/mm] \ = \ 2$

[mm] $\vektor{n_1\\n_2\\n_3}*\vektor{6\\5\\16} [/mm] \ = \ [mm] 6*n_1+5*n_2+16*n_3 [/mm] \ = \ 2$


Zudem gilt für [mm] $\vec{n}_0$ [/mm] als Einheitsvektor: [mm] $\wurzel{n_1^2+n_2^2+n_3^2} [/mm] \ = \ 1$


Gruß
Loddar




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de