www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Ebene E durch 3Punkte
Ebene E durch 3Punkte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene E durch 3Punkte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:25 Do 02.02.2006
Autor: SonyS

Aufgabe
Die drei Eckpunkte A(-2, 1, 1), B(4,4,-5) und C(2,0,3) einer Dreiecks sind im kartesischen Koordinaten gegeben. Gesucht ist:
die Gleichung der Ebene E durch die 3 Punkte A, B, C?

Hallo,

ich habe der folgende Rechenweg versucht:

E:  [mm] \vektor{x \\ y\\ z} [/mm] = [mm] \vektor{-6 \\ -3\\ 6} [/mm] + [mm] \lambda \vektor{-10 \\ -2\\ 8} [/mm] +  [mm] \mu \vektor{-8 \\ -7\\ 2} [/mm]

Soweit ist alles gut, aber jetzt weiss ich nicht wie ich diese Lambda und Mu eliminieren kann, damit ich zu E: 2y + z - 3 = 0 komme. Kann mir vielleicht jemand kurz erklaeren wie das geht. Ich habe ein Paar Erklaerungen im Internet gefunden, aber ich komme nicht ganz klar mit den... Ich bin dankbar wirklich fuer jeder Antwort.

Viellen Dank im Vorraus.

        
Bezug
Ebene E durch 3Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Do 02.02.2006
Autor: banachella

Hallo!

Um diese Aufgabe zu lösen gibt es mehrere Wege:

1. Die Gleichung $ [mm] E\colon [/mm] 2y + z - 3 = 0$ bedeutet ja gerade, dass das Skalarproukt eines Punktes [mm] $\vektor{x\\y\\z}$ [/mm] der Ebene mit [mm] $\vektor{0\\2\\1}$ [/mm] gleich $3$ sein muss. Wie kommst du dorthin?
Zunächst solltest du die Ebenengleichung mit [mm] $\lambda$ [/mm] und [mm] $\mu$ [/mm] aufstellen. Mir scheint, dass du dich dabei verrechnet hast. Benutze $A$ als Aufpunkt:
[mm] $E\colon \vektor{-2\\1\\1}+\lambda\vektor{6\\3\\-6}+\mu\vektor{4\\-1\\2}$. [/mm]
Jetzt bilde das Kreuzprodukt von [mm] $\vektor{6\\3\\-6}$ [/mm] und [mm] $\vektor{4\\-1\\2}$: [/mm]
[mm] $\vektor{6\\3\\-6}\times \vektor{4\\-1\\2}=\vektor{6-(-6)\\-24-12\\-6-12}=\vektor{0\\-36\\-18}=-18*\vektor{0\\2\\1}$. [/mm]
Nun bilde das Skalarprodukt des Aufvektors mit [mm] $\vektor{0\\2\\1}$: [/mm]
[mm] $(-2,1,1)\vektor{0\\2\\1}=2+1=3$. [/mm]
Insgesamt ergibt das [mm] $E\colon [/mm] 2y+z-3=0$.

2. Für einen Punkt der Ebene gilt:
[mm] $\vektor{x\\y\\z}=\vektor{-2\\1\\1}+\lambda\vektor{6\\3\\-6}+\mu\vektor{4\\-1\\2}$. [/mm]
Betrachte nun die einzelnen Zeilen als Gleichungen:
[mm] $x=-2+6*\lambda +4*\mu$ [/mm]
[mm] $y=1+3*\lambda-\mu$ [/mm]
[mm] $z=1-6*\lambda+2*\mu$ [/mm]
Löse dieses Gleichungssystem nach [mm] $\lambda$ [/mm] und [mm] $\mu$ [/mm] auf. Dann bleibt nur noch eine Gleichung übrig, in der du [mm] $\lambda$ [/mm] und [mm] $\mu$ [/mm] eliminiert hast - deine Ebenennormalform.

Gruß, banachella

Bezug
                
Bezug
Ebene E durch 3Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Do 02.02.2006
Autor: SonyS

Vielen Dank fuer dein Antwort. Ich habe mich nicht nur verrechnet, sondern total verwirrt.... Danke, du hast mich sehr geholfen...:):):)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de