www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Ebene Gerade
Ebene Gerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene Gerade: Winkelberechnung
Status: (Frage) beantwortet Status 
Datum: 20:43 Fr 09.03.2007
Autor: polyurie

Aufgabe
Gegeben seien die Vektoren
[mm] \vec{v}=\vektor{1 \\ 2 \\ 3} [/mm]
[mm] \vec{w}=\vektor{3 \\ -1 \\ 2} [/mm]

Gesucht ist diejenige Gerade, die in einer Ebene mit [mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] liegt und die den Winkel zwischen [mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] halbiert.

Hi,
   brauch wieder mal Hilfe mit ner Aufgabe. Was bisher geschah:
Hab die Ebenengleichung aufgestellt:
[mm] \vec{x}=\vektor{0 \\ 0 \\ 0}+\lambda\vektor{1 \\ 2 \\ 3}+\mu\vektor{3 \\ -1 \\ 2} [/mm]

Dann den Winkel zwischen [mm] \vec{w} [/mm] und [mm] \vec{v} [/mm] berechnet:
[mm] \bruch{\vektor{1 \\ 2 \\ 3}*\vektor{3 \\ -1 \\ 2}}{\wurzel{14}*\wurzel{14}} [/mm]

Ergibt:
[mm] cos\bruch{1}{2}=60° [/mm]

Jetzt brauch ich ne Gerade die zum einen in der Ebene liegt und zum andern den Winkel halbiert. Wie gehts weiter?
Danke für eure Hilfe!

Gruß Stefan

        
Bezug
Ebene Gerade: Tipp
Status: (Antwort) fertig Status 
Datum: 21:16 Fr 09.03.2007
Autor: informix

Hallo polyurie,

> Gegeben seien die Vektoren
>  [mm]\vec{v}=\vektor{1 \\ 2 \\ 3}[/mm]
>  [mm]\vec{w}=\vektor{3 \\ -1 \\ 2}[/mm]
>  
> Gesucht ist diejenige Gerade, die in einer Ebene mit
> [mm]\vec{v}[/mm] und [mm]\vec{w}[/mm] liegt und die den Winkel zwischen
> [mm]\vec{v}[/mm] und [mm]\vec{w}[/mm] halbiert.
>  Hi,
>     brauch wieder mal Hilfe mit ner Aufgabe. Was bisher
> geschah:
>  Hab die Ebenengleichung aufgestellt:
>  [mm]\vec{x}=\vektor{0 \\ 0 \\ 0}+\lambda\vektor{1 \\ 2 \\ 3}+\mu\vektor{3 \\ -1 \\ 2}[/mm]
>  
> Dann den Winkel zwischen [mm]\vec{w}[/mm] und [mm]\vec{v}[/mm] berechnet:
>  [mm]\bruch{\vektor{1 \\ 2 \\ 3}*\vektor{3 \\ -1 \\ 2}}{\wurzel{14}*\wurzel{14}}[/mm]
>  
> Ergibt:
> [mm]cos\bruch{1}{2}=60°[/mm]
>  
> Jetzt brauch ich ne Gerade die zum einen in der Ebene liegt
> und zum andern den Winkel halbiert. Wie gehts weiter?
>  Danke für eure Hilfe!
>  

Such dir 'nen Vektor, der "zwischen" [mm] $\vec [/mm] v$ und [mm] $\vec [/mm] w$ liegt: z.B. [mm] $\vec v+\vec [/mm] w$
(denk mal an ein Kräfteparallelogramm)
und bestimme damit die gesuchte Gerade...

Gruß informix

Bezug
                
Bezug
Ebene Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:23 Fr 09.03.2007
Autor: polyurie

Alles klar hat wunderbar geklappt. Danke!
Mich würde jetzt aber noch interessieren ob es auch noch einen anderen Lösungsweg gibt. Was wäre z. B. wenn ein Winkel von 45 Grad zu einem der Richtungsvektoren gesucht wäre?

Bezug
                        
Bezug
Ebene Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 01:54 Sa 10.03.2007
Autor: HJKweseleit

Wenn beide Vektoren nicht gleich lang gewesen wären, wäre die Summe nicht die Winkelhalbierende gewesen! Bezeichnet a die Länge von [mm] \vec{a} [/mm] und b die Länge von [mm] \vec{b}, [/mm] so gibt [mm] b*\vec{a}+a*\vec{b} [/mm] die Richtung der Winkelhalbierenden an (beide Summanden haben durch den Vorfaktor dieselbe Länge).

Nun Zu deiner Zusatzfrage. Präzisierung: Gegeben Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b}. [/mm] Gesucht: Vektor [mm] \vec{c}, [/mm] der in der selben Ebene wie [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] liegt und zu [mm] \vec{a} [/mm] einen Winkel [mm] \alpha [/mm] bildet.

Bilde [mm] \vec{x}=(\vec{a}\vec{b})\vec{a}-a^{2}\vec{b}. [/mm] Dabei steht in der Klammer das Skalarprodukt, also eine Zahl.
Für [mm] \vec{x} [/mm] gilt:
1. [mm] \vec{x} [/mm] ist Linearkombination von [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm]
2. [mm] \vec{x}*\vec{a}=0. [/mm]   (wegen [mm] \vec{a}*\vec{a}=a^{2}) [/mm]

Damit liegt [mm] \vec{x} [/mm] in der selben Ebene wie [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] und steht senkrecht auf [mm] \vec{a}. [/mm]

Male dir das nun auf, insbesondere die nächsten Überlegungen.

Legt man nun [mm] \vec{x} [/mm] an die Spitze von [mm] \vec{a}, [/mm] so bildet die Summe [mm] \vec{a}+\vec{x} [/mm] mit [mm] \vec{a} [/mm] und [mm] \vec{x} [/mm] ein rechtwinkliges Dreieck mit tan [mm] \alpha [/mm] = x/a.

Will man einen bestimmten Winkel [mm] \alpha [/mm] haben, so verlängert oder verkürzt  man [mm] \vec{x} [/mm] auf [mm] \vec{c}= k*\vec{x} [/mm] und wählt k so, dass tan [mm] \alpha [/mm] = c/a ist.  Dann bildet [mm] \vec{a}+ \vec{c} [/mm] mit [mm] \vec{a} [/mm] den Winkel [mm] \alpha. [/mm]

Bezug
                                
Bezug
Ebene Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:45 Sa 10.03.2007
Autor: polyurie

Vielen Dank für die ausführliche Antwort. Werd jetzt erstmal schlafen und morgen darüber nachdenken. Danke nochmals!!!

Bezug
                                        
Bezug
Ebene Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Sa 10.03.2007
Autor: HJKweseleit

Falls du das Skalarprodukt noch nicht kennst, kannst du mit den Ausführungen zu deiner zweiten Frage noch nichts anfangen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de