www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ebene aufspannen
Ebene aufspannen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene aufspannen: Hilfe wegen Ebene
Status: (Frage) beantwortet Status 
Datum: 21:54 Di 09.01.2007
Autor: thefabulousme86

Aufgabe
Bestimmen sie die Ebene den die Geraden g1 und g2 aufspannen:

[mm] g1=(5/2/3)+\lambda*(1/3/2) [/mm] und  [mm] g2=(1/-1/8)+\lambda*(1/3/2) [/mm]

HI @ all,

Ich hab folgendes problem, können zwei geraden die, die gleichen richtungsvektoren überhaupt eine Ebene aufspannen??? das ist doch überhaupt nicht möglich, oder? sie sind doch parallel, und wie können parallele Vektoren eine Ebene aufspannen.

Könnte mir das bitte jemand erklären????

und noch eine frage: wenn zwei geraden die gleichen Aufpunkte haben

zum Beispiel:

[mm] g1=(5/2/3)+\lambda*(1/3/2) [/mm]  und      [mm] g2=(5/2/3)+\lambda*(6/3/4) [/mm]


lautet die ebene dann [mm] E=(5/2/3)+\lambda*(1/3/2)+\mu*(6/3/4) [/mm]


stimmt das????

Vielen dank im voraus


ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ebene aufspannen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Di 09.01.2007
Autor: Zwerglein

Hi, Daniel,

> Bestimmen sie die Ebene den die Geraden g1 und g2
> aufspannen:
>  
> [mm]g1=(5/2/3)+\lambda*(1/3/2)[/mm] und  
> [mm]g2=(1/-1/8)+\lambda*(1/3/2)[/mm]
>  HI @ all,
>  
> Ich hab folgendes problem, können zwei geraden die, die
> gleichen richtungsvektoren überhaupt eine Ebene
> aufspannen??? das ist doch überhaupt nicht möglich, oder?
> sie sind doch parallel, und wie können parallele Vektoren
> eine Ebene aufspannen.

Nicht die parallelen VEKTOREN, sondern die parallelen GERADEN sollen eine Ebene aufspannen!
Das geht natürlich schon!
Stell Dir vor, die beiden parallelen Geraden sind 2 Drähte, die Du nebeneinander hältst. Nun legst Du (in Gedanken) z.B. einen Karton auf die Drähte: das ist die gemeinsame Ebene!

Nun zum rechnerischen Teil:
Als Aufpunkt nimmst Du einen der beiden Aufpunkte der Geraden;
als ersten Richtungsvektor den Richtungsvektor der Geraden,
als zweiten Richtungsvektor den VERBINDUNGSVEKTOR zwischen den beiden Aufpunkten.

> und noch eine frage: wenn zwei geraden die gleichen
> Aufpunkte haben
>  
> zum Beispiel:
>  
> [mm]g1=(5/2/3)+\lambda*(1/3/2)[/mm]  und      
> [mm]g2=(5/2/3)+\lambda*(6/3/4)[/mm]
>
>
> lautet die ebene dann
> [mm]E=(5/2/3)+\lambda*(1/3/2)+\mu*(6/3/4)[/mm]
>  
>
> stimmt das????

Ja, das stimmt!

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de