www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Ebene bestimmen
Ebene bestimmen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Mo 25.02.2008
Autor: Artist

Aufgabe
Die Ebene [mm] E_{1} [/mm] ist gegeben: [mm] 2x_{1}+2x_{2}-2x_{3}=14. [/mm]
Die Ebene [mm] E_{2} [/mm] ist parallel zur [mm] x_{1}-x_{3}-Ebene [/mm] und enthält den Punkt P(0|6|0). Bestimme eine Schnittgerade zu [mm] E_{1} [/mm] und [mm] E_{2}! [/mm]

Hallöchen...

Aaalso...ich weiß zwar, wie ich die Schnittgerade bestimmen kann, aber wie soll ich denn jetzt die Ebene 2 bestimmen? Ichverstehe vor allen Dingen diese [mm] "x_{1}-x_{3}-Ebene"- [/mm] Information nicht...Kann mir jemand dabei behilflich sein?

Danke im voraus!

~Artist~

(Ich habe diese Frage in keine anderen Foren gestellt!)

        
Bezug
Ebene bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Mo 25.02.2008
Autor: Maggons

Hallo!

Wenn du Probleme damit hast würde ich dir empfehlen, dass du deine [mm] E_{2} [/mm] zunächst in Parameterform aufstellst.

Da der Punkt [mm] \vektor{0 \\ 6 \\ 0} [/mm] in der Ebene enthalten sein muss, nehmen wir ihn einfach als Aufpunkt.

Falls eine Ebene parallel zur [mm] x_{1}- x_{3}- [/mm] Ebene ist, verändert sich die [mm] x_{2}- [/mm] Koordinate niemals.

Kannst du selbst 2 Richtungsvektoren bestimmen, von welcher einer parallel zur [mm] x_{1}- [/mm] und der andere parallel zur [mm] x_{3}- [/mm] Achse verläuft?

Das wäre dann schon des Rätsels Lösung; die dann noch in Koordinatenform bringen und Ende.

Lg

Bezug
                
Bezug
Ebene bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Mo 25.02.2008
Autor: Artist

Ersteinmal vielen vielen Dank für deine Antwort! ;)

Ok, aber ich verstehe nicht wie ich das berechnen soll.
Hat es was mit den Spurgeraden zu tun?
Wenn sich die [mm] x_{2}- [/mm] Koordinate nicht ändert, kann ich sie doch = 0 setzen oder?


Bezug
                        
Bezug
Ebene bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Mo 25.02.2008
Autor: abakus


> Ersteinmal vielen vielen Dank für deine Antwort! ;)
>  
> Ok, aber ich verstehe nicht wie ich das berechnen soll.
> Hat es was mit den Spurgeraden zu tun?
>  Wenn sich die [mm]x_{2}-[/mm] Koordinate nicht ändert, kann ich sie
> doch = 0 setzen oder?

Dann bekommst du allerdings die Ebene aller Punkte, deren  [mm]x_{2}-[/mm] Koordinate gleich Null ist - also die [mm] x_1-x_3 [/mm] -Ebene. Dort liegt aber der Punkt (0|6|0) nicht drin. Wenn sich die [mm] x_2- [/mm] Koordinate nicht ändert und wenn sie für einen Punkt der Ebene gleich 6 sein soll...

>  


Bezug
        
Bezug
Ebene bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:23 Mo 25.02.2008
Autor: Artist

Ich verstehe es irgendwie nicht...tut mir Leid. :'(

Muss dann die [mm] x_{2}-Koordinate [/mm] gleich 6 sein, bei beiden Rcihtungsvektoren?
Aber wie bekomme ich denn die [mm] x_{1} [/mm] und [mm] x_{2}-Koordinaten [/mm] heraus?Mit einem Gleichungssystem, die ich nach dem Aufpunkt lösen muss?


Bezug
                
Bezug
Ebene bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mo 25.02.2008
Autor: Maggons

Hallo!

Nein! Wenn in beiden Richtungsvektoren die [mm] x_{2}- [/mm] Koordinate 6 wäre, so würde sie sich stetig ändern.

Wenngleich das "hier eigentlich nicht üblich ist", so verstehe ich deine Probleme hiermit.

Also korrekt wäre, wie ich bereits oben gesagt habe, dass man der Einfachheit halber eine Ebene in Parameterform aufstellt.

Man nimmt als Aufpunkt den Punkt, der in [mm] E_{2} [/mm] enthalten sein muss, also
[mm] \overrightarrow{OP}= \vektor{0 \\ 6 \\0} [/mm]

Als Richtungsvektoren kannst du nun relativ beliebige Wählen; hauptsache man kann durch Kombination von beiden jeden beliebigen Punkt, der parallel zur [mm] x_{1}-x_{3}- [/mm] Ebene  liegt, darstellen.

Also ergibt sich als mögliche Ebene [mm] E_{2}: [/mm]

|E: [mm] \overrightarrow{OX}(r,s)= \vektor{0 \\ 6 \\0} [/mm] +r * [mm] \vektor{1 \\ 0 \\0} [/mm] + s *  [mm] \vektor{0 \\ 0 \\1},r,s \in \IR [/mm]


Die [mm] x_{2}- [/mm] Koordinate bleibt konstant; sie muss 6 bleiben, da sonst nicht der Punkt P enthalten sein könnte.

Durch die beiden Richtungsvektoren wird nun eine zur [mm] x_{1}-x_{3}- [/mm] Ebene aufgespannt.

Diese kannst du nun benutzen um deine Schnittgerade zu berechnen.

Ich hoffe, dass du es dir nun anhand des Ergebnisses vllt. ein wenig klarer machen kannst.

Lg

Bezug
                        
Bezug
Ebene bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 Mo 25.02.2008
Autor: Artist

Achsoo...ich dachte man müsste ein Gleichungssystem aufstellen und die Koordinaten berechnen. Also man kann quasi (fast) jede beliebige Zahl (vorausgesetzt sie sind Vielfaches von den Vektoren, die du vorgeschlagen hast) einsetzen, man hätte dann auch Vielfaches von [mm] \vektor{1 \\ 0 \\0} [/mm] und von [mm] \vektor{0 \\ 0 \\1}, [/mm] wie zum Beispiel [mm] \vektor{2 \\ 0 \\0} [/mm] und [mm] \vektor{0 \\ 0 \\2} [/mm] nehmen können...

Da ist ein Mensch dank euch wieder ein bisschen schlauer geworden, dankeschöön!

Gute Nacht!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de