www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Ebene durch Normalenvektor
Ebene durch Normalenvektor < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene durch Normalenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Mo 09.07.2007
Autor: Bastiane

Hallo!

Ich habe hier gerade ein Verständnisproblem - ich hoffe, ihr seid des Englischen mächtig. :-)

Folgendes steht im Skript:

"... where we define the plane in terms of a normal vector (given by [mm] j_1 [/mm] and [mm] j_2), [/mm] and fix ist at [mm] j_3. [/mm] For example, using the plane that is normal to the vector from [mm] j_1 [/mm] to [mm] j_2 [/mm] fixed at [mm] j_3..." [/mm]

Eigentlich ist nur der erste Satz wichtig - ich dachte nur, dass das zweite als Beispiel evtl. hilft. Leider ist der Zusammenhang des Ganzen etwas komplizierter, so dass ich das nicht alles erläutern kann.

Aber mein Problem ist, dass ich einfach nicht weiß, wie denn diese Ebene jetzt definiert werden soll. Also wir haben zwei Vektoren [mm] j_1 [/mm] und [mm] j_2. [/mm] Zuerst hatte ich verstanden, dass ich jetzt einen Normalenvektor zu diesen beiden nehme - das wäre doch dann z. B. das Kreuzprodukt von beiden, wenn ich mich nicht irre. Und das soll dann ein Normalenvektor der Ebene sein? Aber dann könnte ich doch gleich sagen, dass ich die Ebene meine, die von [mm] j_1 [/mm] und [mm] j_2 [/mm] aufgespannt wird?

Heute meinte dann jemand, dass man den Differenzvektor von [mm] j_1 [/mm] und [mm] j_2 [/mm] nimmt. Und dazu dann einen Normalenvektor. Aber kann es zu einem Vektor einen Normalenvektor geben??

Irgendwo habe ich da wohl einen Denkfehler - wäre super, wenn mir da jemand helfen könnte. :-)

Viele Grüße
Bastiane
[cap]


        
Bezug
Ebene durch Normalenvektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Mo 09.07.2007
Autor: dormant

Hi!

Nicht ganz sicher, aber das []das könnte es sein. Also die Ebene, die orthogonal zu einem Normalenvektor zu [mm] j_1 [/mm] und [mm] j_2 [/mm] ist. Noch mal []hier zum Vergleichen.

Gruß,
dormant

Bezug
        
Bezug
Ebene durch Normalenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Mo 09.07.2007
Autor: angela.h.b.

Hallo,

ich verstehe das so - und ich bin frei von Zweifeln (diesbezüglich):

[mm] j_1, j_2, j_3 [/mm] sind Punkte eines Raumes.

Die Ebene, um die es geht, soll durch [mm] j_3 [/mm] gehen, und sie ist normal zum Vektor [mm] \overrightarrow{j_1j_2}. [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de