www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Ebene in Normalform
Ebene in Normalform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene in Normalform: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:49 Di 22.10.2013
Autor: Pauli85

Hallo,

ich stehe gerade total auf dem Schlauch und bräuchte eine kleine Hilfe.
Es geht um Ebenen in Normalform:
E: [mm] \vektor{n_1 \\ n_2 \\ n_3}*[\vec{x}-\vektor{p_1 \\ p_2 \\ p_3}]=0, [/mm] wobei [mm] \vec{n} [/mm] der Normalenvektor und p [mm] \in [/mm] E ist.

Wenn ich nun einen Punkt einsetzte, der nicht auf der Ebene E liegt, sagen wir [mm] \vec{a}=\vektor{a_1 \\ a_2 \\ a_3}, [/mm] dann erhalte ich ja: [mm] \vektor{n_1 \\ n_2 \\ n_3}*[\vektor{a_1 \\ a_2 \\ a_3}-\vektor{p_1 \\ p_2 \\ p_3}] [/mm] = d, mit d [mm] \in \IR. [/mm]

Was genau sagt mir jetzt das d aus? Ich meine in Erinnerung zu haben, dass d der Abstand vom Punkt a zur Ebene E ist. Aber in einem kleinen Beispiel das ich gerechnet habe stimmt dies nicht. Was kann ich also aus d schließen?

Viele Grüße

        
Bezug
Ebene in Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Di 22.10.2013
Autor: pi-roland

Hallo,

nun würde natürlich das Zahlenbeispiel von Interesse sein. Vielleicht kannst du das hier kurz andeuten, denn ich war immer froh eine Ebenengleichung in Normalenform zu haben, da ich dann ganz leicht (so wie du) den Abstand eines Punktes zur Ebene erhalten konnte.

Vielen Dank für deine Mühe


[mm] \pi-\mathrm{rol} [/mm]

Bezug
        
Bezug
Ebene in Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 Di 22.10.2013
Autor: reverend

Hallo Pauli,

> ich stehe gerade total auf dem Schlauch

Ganz schlecht. Das verringert die Durchflussmenge.

> und bräuchte eine
> kleine Hilfe.
> Es geht um Ebenen in Normalform:
> E: [mm]\vektor{n_1 \\ n_2 \\ n_3}*[\vec{x}-\vektor{p_1 \\ p_2 \\ p_3}]=0,[/mm]
> wobei [mm]\vec{n}[/mm] der Normalenvektor

Da gibt es gemeinhin gleich 2!

> und p [mm]\in[/mm] E ist.

>

> Wenn ich nun einen Punkt einsetzte, der nicht auf der Ebene
> E liegt, sagen wir [mm]\vec{a}=\vektor{a_1 \\ a_2 \\ a_3},[/mm] dann
> erhalte ich ja: [mm]\vektor{n_1 \\ n_2 \\ n_3}*[\vektor{a_1 \\ a_2 \\ a_3}-\vektor{p_1 \\ p_2 \\ p_3}][/mm]
> = d, mit d [mm]\in \IR.[/mm]

Jo.

> Was genau sagt mir jetzt das d aus? Ich meine in Erinnerung
> zu haben, dass d der Abstand vom Punkt a zur Ebene E ist.

Sehr gutes Erinnerungsvermögen.

> Aber in einem kleinen Beispiel das ich gerechnet habe
> stimmt dies nicht. Was kann ich also aus d schließen?

Dann solltest Du das Beispiel mal vorstellen. Ist [mm] \vec{n} [/mm] wirklich normiert? Sonst klappts nicht.

> Viele Grüße

LG
rev

Bezug
                
Bezug
Ebene in Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:23 Mi 23.10.2013
Autor: Pauli85


> Ist [mm]\vec{n}[/mm] wirklich normiert? Sonst klappts nicht.

Ha, da liegt der Hund schon begraben, mein Vektor [mm] \vec{n}=\vektor{1 \\ 1 \\ 1} [/mm] ist natürlich nicht normiert!
Vielen Dank also euch beiden,

Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de