www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Ebenen
Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 So 02.12.2007
Autor: Melli1988

Aufgabe
E1: 3x1-5x2+x3=-2
Die Ebene E3 ist zur Ebene E1 parallel und geht durch den Punkt P(2/1/6). Bestimme eine Gleichung der Ebene E3.

Eine Ebene E ist zur Ebene E1 parallel. Wie sehen die Gleichungen von E aus?

Halllooooo....

Kann mir jemand helfen? Brüte über der Aufgabe und krieg keinen klaren Gedanken. Besonders auch beim zweiten Teil. Ist da nach ner allgemeinen Gleichung gefragt?

Dankeschön im Vorraus...

        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 So 02.12.2007
Autor: Maggons

Hallo :)

Ich würde nun deine gegebene Ebene in Parameterform umwandeln und dann einfach für den Aufpunktsvektor der Ebene den Punkt P einsetzten; dann hast du eine neue Ebene mit den gleichen Richtungsvektoren aber einem anderen Aufpunktsvektor, somit also eine parallele Ebene.

[Das hier musst du nur lesen, wenn du bereits mit Normalenformen gearbeitet hast, was ich aber bezweifele:

einfacher ist es noch, wenn du schnell aus der Koordinatenform die Normalenform "abliest" und da den Punkt P als Aufpunkt einsetzt.]


Daraufhin formst du deine "neue Parametergleichung" wieder in eine Koordinatengleichung um, wo du dann etwas "tolles" feststellen wirst, was ist dann auch schon Aufgabenteil b).

Führ erstmal obige Schritte aus, falls du nicht weiter kommst, helfe ich gerne :)

Ciao liebe Grüße

Marco

Bezug
                
Bezug
Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 So 02.12.2007
Autor: Melli1988

Meinst du mit Normalenform den Normalenvektor? Den hatten wir schon.. und wie soll ich P als Aufpunkt einsetzen? Meinst du einfach addieren? Oder was meinst du mit Aufpunkt?

Schonmal vielen Dank :)

Bezug
                        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 So 02.12.2007
Autor: Maggons

Die Parameterform einer Ebene wird gebildet durch:

Aufpunktsvektor +Parameter1*Richtungsvektor1+Parameter2*Richtungsvektor2

Forme deine gegebene Ebene in solch eine Form um.

Wenn du das hast, ersetze den Aufpunktsvektor (man nennt ihn glaube auch Stützvektor), mit dem Punkt P, um die Ebene "von einem anderen Punkt her aufspannen zu lassen".

Und dir wurde ja schon die Quintessenz verraten; am Ende werden sich die zueinander parallelen Ebenen nur noch durch einen unterschiedlichen Wert d in ihrer Koordinatengleichung unterscheiden.

Lg

Bezug
                        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 So 02.12.2007
Autor: Maggons

Und mit Normalenform meinte ich eine weitere Form, mit welcher eine Ebene beschrieben werden kann. Lediglich der Normalenvektor und der Aufpunkt sind in der Form gegeben, was aber hier keinerlei relevanz hat.
Die Parameterform genügt :)

Bezug
                                
Bezug
Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 So 02.12.2007
Autor: Melli1988

Vielen Dank.. bistn Schatz ;)

Bezug
        
Bezug
Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 So 02.12.2007
Autor: Beliar

Hallo
zum zweiten Teil der Aufgabe, würde ich sagen dass es da nur einen Unterschied im d-Wert gibt. Da sie parallel sein soll, aber nicht identisch.
z.B 3(x1)-5(x2)+1(x3)=-2
    3(x1)-5(x2)+1(x3)=8
lg
Beliar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de