www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Ebenen und Geraden
Ebenen und Geraden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen und Geraden: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:31 Fr 20.01.2006
Autor: Bea71

Aufgabe
Es sei die Ebene


[mm]E: x = \begin{pmatrix}3\\0\\7\end{pmatrix} + s\begin{pmatrix}1\\3\\2\end{pmatrix} + t\begin{pmatrix}2\\5\\7\end{pmatrix}[/mm]


gegeben. Bestimme die Variable [mm]a[/mm] in der Parameterdarstellung von [mm]g[/mm] so, dass gilt:


[mm]g: x = \begin{pmatrix}2\\1\\5\end{pmatrix} + r\begin{pmatrix}a\\1\\1\end{pmatrix}[/mm] und [mm]g[/mm] ist parallel zu [mm]E[/mm]



Wie kann ich dieses [mm]a[/mm] bestimmen wenn [mm]g[/mm] zu [mm]E[/mm] parallel sein soll.

Ich habe leider keine Ahnung, wie ich das machen soll. Vielleicht kann mir jemand einen Tipp geben? Wäre toll.



Gruß
Bea


[Ich habe diese Frage in keinem anderen Internet-Forum gestellt.]




        
Bezug
Ebenen und Geraden: zwei Wege
Status: (Antwort) fertig Status 
Datum: 11:56 Fr 20.01.2006
Autor: Roadrunner

Hallo Bea,

[willkommenmr] !!


Damit Gerade und Ebene parallel sind, müssen die Richtungsvektoren von Ebene und der Geraden linear abhängig sein:

[mm] $s*\vektor{1\\3\\2}+t*\vektor{2\\5\\7} [/mm] \ = \ [mm] \vektor{a\\1\\1}$ [/mm]

Hier musst Du nun ein Gleichungssystem aufstellen (zeilenweise). Aus den letzten beiden Zeilen lassen sich $r_$ und $s_$ ermitteln und damit das gesuchte $a_$ (Einsetzen in die erste Zeile).


Alternativ kannst Du einen Normalenvektor der Ebene [mm] $\vec{n}_E$ [/mm] bestimmen. Dieser muss dann auch senkrecht auf den Richtungsvektor der Geraden stehen:

[mm] $\vec{n}_E*\vektor{a\\1\\1} [/mm] \ = \ 0$


Gruß vom
Roadrunner


Bezug
                
Bezug
Ebenen und Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Mo 23.01.2006
Autor: Bea71

Danke für die schnelle Hilfe, bin aber noch nicht wirklich am Ziel. Lauten die Gleichungen

I.      1 s + 2 t = a ( oder ar)
II.     3 s + 5 t = 1 ( oder 1r)
III.    2 s + 7 t = 1 ( oder 1r)

Wäre schön, wenn mir jemand noch weiterhilft, da ich diese Aufgabe in der nächsten Stunde an der Tafel vorrechnen soll.
Lieben Gruß
Bea

Bezug
                        
Bezug
Ebenen und Geraden: Stimmt so ...
Status: (Antwort) fertig Status 
Datum: 11:54 Mo 23.01.2006
Autor: Roadrunner

Hallo Bea!


> I.      1 s + 2 t = a
> II.     3 s + 5 t = 1
> III.    2 s + 7 t = 1

[daumenhoch] So ist es richtig!

Nun mit Gleichung [II] und [III] eine Lösung für $s_$ und $t_$ ermitteln und daraus dann den gesuchten Parameter $a_$ ...


Gruß vom
Roadrunner


Bezug
                                
Bezug
Ebenen und Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Mo 23.01.2006
Autor: Bea71

Hallo Roadrunner,

jetzt habe ich die Gleichungen aufgelöst und bekomme folgende Ergebnisse, wo ich nicht sicher bin, ob die richtig sind:

t = 1/11
S = 4/22
a= 8/22.

Kannst Du mal schaun, ob das hinkommen kann. Vielen lieben Dank im Voraus.
Gruß
Bea  

Bezug
                                        
Bezug
Ebenen und Geraden: andere Lösung
Status: (Antwort) fertig Status 
Datum: 13:02 Mo 23.01.2006
Autor: Herby

nun aber ;-)

Hallo Bea,

ich habe für t dasselbe wie du, jedoch für [mm] s=\bruch{2}{11} [/mm] und für [mm] a=\bruch{4}{11} [/mm]



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de