www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Ebenenaufgabe (zur Normalform)
Ebenenaufgabe (zur Normalform) < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenenaufgabe (zur Normalform): Aufgabe --> Frage
Status: (Frage) beantwortet Status 
Datum: 19:26 Fr 16.12.2005
Autor: Sparrow

Aufgabe
Gegeben Punkt $P (2|0|6)$ und Ebene $E:\ [mm] x_{1} [/mm] - [mm] x_{2} [/mm] +  [mm] 2x_{3} [/mm] - 2 = 0$.
Bestimmen Sie ein Spiegelbild  $P'$ von $P$ zur Ebene $E$.

Ich weiß den Ansatz schon.

Ich habe von den Punkt P in einer anderen Teilaufgabe ein Lot auf die Ebene gefällt.
Dabei kam für den Schnittpunkt F das Ergebnis: (0|2|2) heraus.
Nun weiß ich dass, der Schnittpunkt F auf der Ebene liegt und an diesem Punkt wird P --> [mm] P^{'} [/mm] gespiegelt.

Sprich ich nehme als Aufhängepunkt F (0|2|2) und dann den Richtungsvektor  [mm] \lambda \overrightarrow{PF} [/mm]

Ich muss Richtungsvektor PF nehmen, da ja der Vektor nun in die andere Richtung geht.
Eigentlich ist nun die Aufgabe gelöst, da:

[mm] \overrightarrow{P^{'}} [/mm] = [mm] \overrightarrow{F} [/mm] + [mm] \overrightarrow{PF} [/mm]

Aber wie mache ich das nun???

So sieht die Gleichung aus:

[mm] \vektor{0 \\ 2 \\ 2} [/mm] +  [mm] \lambda \vektor{-2 \\ 2 \\ -4} [/mm]

Ich brauche einen Punkt, soll ich Lamda =1 setzen und dann einfach den Punkt so ausrechnen? Bitte um Hilfe, es geht um mein Mathe Abi ... schreibe Klausur die Lebenswichtig ist!
Werden noch 2 Fragen im laufe des WOchenendes kommen,
danke für Hilfe
Sebastian

        
Bezug
Ebenenaufgabe (zur Normalform): Hinweis
Status: (Antwort) fertig Status 
Datum: 20:50 Fr 16.12.2005
Autor: MathePower

Hallo Sparrow,

> 1.) Bestimmen sie ein Spiegelbild  [mm]P^{'}[/mm] von P zur Ebene
> E.
>  Gegeben Punkt P (2|0|6) und Ebene: E:x=  [mm]x_{1}[/mm] - [mm]x_{2}[/mm] +  
> [mm]2x_{3}[/mm] - 2 = 0
>  
>
> Ich weiß den Ansatz schon.
>  
> Ich habe von den Punkt P in einer anderen Teilaufgabe ein
> Lot auf die Ebene gefällt.
>  Dabei kam für den Schnittpunkt F das Ergebnis: (0|2|2)
> heraus.
>  Nun weiß ich dass, der Schnittpunkt F auf der Ebene liegt
> und an diesem Punkt wird P --> [mm]P^{'}[/mm] gespiegelt.
>  
> Sprich ich nehme als Aufhängepunkt F (0|2|2) und dann den
> Richtungsvektor  [mm]\lambda \overrightarrow{PF}[/mm]
>  
> Ich muss Richtungsvektor PF nehmen, da ja der Vektor nun in
> die andere Richtung geht.
>  Eigentlich ist nun die Aufgabe gelöst, da:
>  
> [mm]\overrightarrow{P^{'}}[/mm] = [mm]\overrightarrow{F}[/mm] +
> [mm]\overrightarrow{PF}[/mm]
>  
> Aber wie mache ich das nun???
>  
> So sieht die Gleichung aus:
>  
> [mm]\vektor{0 \\ 2 \\ 2}[/mm] +  [mm]\lambda \vektor{-2 \\ 2 \\ -4}[/mm]
>  
> Ich brauche einen Punkt, soll ich Lamda =1 setzen und dann
> einfach den Punkt so ausrechnen? Bitte um Hilfe, es geht um
> mein Mathe Abi ... schreibe Klausur die Lebenswichtig ist!

Nun den Punkt F hast Du ja auf der Ebene. Für diesen gilt:

[mm] \begin{gathered} P\; - \;2\;\overrightarrow n \; = \;F \hfill \\ \Leftrightarrow \;P\; = \;F\; + \;2\;\overrightarrow n \hfill \\ \end{gathered} [/mm]

,wobei n der Normalenvektor der Ebene ist.

Für den gespiegelten Punkt gilt demnach:

[mm]P'\; = \;F\; - \;2\;\overrightarrow n [/mm]

, da dieser denselben Abstand zur Ebene haben muß wie der Punkt P.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de