www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Ebenenbestimmung
Ebenenbestimmung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenenbestimmung: Ebenenbestimmung...
Status: (Frage) beantwortet Status 
Datum: 11:28 Mi 02.01.2013
Autor: GrueneFee

Aufgabe
Es seien die Punkte A ( 1/1/0), B (-1/2/1) und C ( 2 / -2 / 3) gegeben.

c) Es gibt eine eindeutig bestimmte Ebene E, in welcher alle drei Punkte liegen. Geben Sie für E eine Ebenengleichung in Parameter- und eine Ebenegleichung in Koordiantenform an.

Moin moin zusammen,


mir erscheint die Lösung zu einfach, als dass sie richtig sein kann ;)

E [mm] \vec{x}= \vektor{1\\1\\0} [/mm] + r [mm] \vektor{-1\\2\\1} [/mm] + s [mm] \vektor{2\\-2\\3} [/mm]

Meine Überlegung war diese:

Die drei Punkte MÜSSEN ja laut Aufgabenstellung innerhalb der Ebene E liegen, daher ist es doch naheliegen einfach die drei Punkte als Stützpunkt und Richungsvektoren zu verwenden... oder liege ich da komplett falsch? ...

Bitte um eure Hilfe und vielen Dank, auch für frühere Hilfeleistungen :)

Gruß,
Die Gruene_Fee

        
Bezug
Ebenenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Mi 02.01.2013
Autor: M.Rex

Hallo


> Es seien die Punkte A ( 1/1/0), B (-1/2/1) und C ( 2 / -2 /
> 3) gegeben.
>  
> c) Es gibt eine eindeutig bestimmte Ebene E, in welcher
> alle drei Punkte liegen. Geben Sie für E eine
> Ebenengleichung in Parameter- und eine Ebenegleichung in
> Koordiantenform an.
>  Moin moin zusammen,
>  
>
> mir erscheint die Lösung zu einfach, als dass sie richtig
> sein kann ;)
>  
> E [mm]\vec{x}= \vektor{1\\ 1\\ 0}[/mm] + r [mm]\vektor{-1\\ 2\\ 1}[/mm] + s
> [mm]\vektor{2\\ -2\\ 3}[/mm]
>  
> Meine Überlegung war diese:
>  
> Die drei Punkte MÜSSEN ja laut Aufgabenstellung innerhalb
> der Ebene E liegen, daher ist es doch naheliegen einfach
> die drei Punkte als Stützpunkt und Richungsvektoren zu
> verwenden... oder liege ich da komplett falsch? ...


Ganz so einfach ist es in der Tat nicht.

Eine Parameterform einer durch die Punkte P, Q und R gegebenen Ebene ist:

[mm] E:\vec{x}=\vec{p}+\lambda\cdot\overrightarrow{PQ}+\mu\cdot\overrightarrow{PR} [/mm]

Natürlich kannst du auch Q oder R als Stützpunkt nehmen.
Deine Richtungsvektoren sind also hier falsch.



>
> Bitte um eure Hilfe und vielen Dank, auch für frühere
> Hilfeleistungen :)
>
> Gruß,
>  Die Gruene_Fee

Marius


Bezug
                
Bezug
Ebenenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Mi 02.01.2013
Autor: GrueneFee

wow, danke für die schnelle Antwort!

Mh, also ich dachte mir schon das es nicht ganz so einfach sein kann :)

Kannst du mir noch einen Denkanstoß geben wie ich die Richtungsvektoren finde? In meinem Lernheft habe ich leider nichts passendes gefunden. Höchstens wie man die Spannvektoren einer zur Ebene E senkrecht stehenden Geraden findet.... wäre das vielleicht ein Anfang?




Bezug
                        
Bezug
Ebenenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Mi 02.01.2013
Autor: Diophant

Hallo,

nehmen wir zwei Punkte A und B, dann seien [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] die Ortsvektoren dieser Punkte. Das bedeutet also, dass die Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] die gleichen Koordinaten besitzen wie die zugehörigen Punkte, denn Ortsvektoren haben im Unterschied zu gewöhnlichen Vektoren eine Lage: sie beginnen stets im Koordinatenursprung.

Wenn wir nun denjenigen Vektor berechnen wollen, der von A nach B zeigt, und diesen mit [mm] \overrightarrow{AB} [/mm] bezeichnen wollen, dann gilt folgender Zusammenhang:

[mm] \overrightarrow{AB}=\vec{b}-\vec{a} [/mm]

Das müsste ganz zu Beginn der Vektorrechnung behandelt worden sein, und wenn du es nicht mehr weißt, dann solltest du diese Basics in deinem eigenen Interesse nochmals gründlich nacharbeiten.


Gruß, Diophant

Bezug
                                
Bezug
Ebenenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Mi 02.01.2013
Autor: GrueneFee

Ok, ich denke ( und hoffe ) ich habe das verstanden.

Ausgerechnet wäre dann meine Ebene E in Parameterform:

E : [mm] \vec{x} [/mm] = [mm] \vektor{1\\1\\0}+ r*\vektor{-2\\1\\1}+s*\vektor{1\\-3\\3} [/mm]

oh je, ist das richtig?

Bezug
                                        
Bezug
Ebenenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mi 02.01.2013
Autor: Richie1401

Hallo GrueneFee,

> Ok, ich denke ( und hoffe ) ich habe das verstanden.
>  
> Ausgerechnet wäre dann meine Ebene E in Parameterform:
>  
> E : [mm]\vec{x}[/mm] = [mm]\vektor{1\\1\\0}+ r*\vektor{-2\\1\\1}+s*\vektor{1\\-3\\3}[/mm]
>  
> oh je, ist das richtig?  

Ja, das ist eine mögliche Lösung.

Bleibt noch die Aufgabe mit der Koordinatenform. Weißt du, wie du vorgehen musst, und vor allem, was für eine Bedeutung die Gleichung hat?

Bezug
                                                
Bezug
Ebenenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:51 Do 03.01.2013
Autor: GrueneFee

Super, freut mich sehr, dass das eine mögliche richtige Antwort ist :)

Also meine Ebene E in Koordinatenform würde so aussehen:

E [mm] \vec{x}: [/mm] -0,2x1+1,4x2+x3=2,6

Meine Rechnung dazu:

E [mm] \vec{x} [/mm] = [mm] \vektor{1\\1\\0} [/mm] + [mm] r\* \vektor{-2\\1\\1} [/mm] + [mm] s\* \vektor{1\\-3\\3} [/mm]

x1= 1-2r+s
x2= 1+r-3s
x3= 0 + r + 3s

Umgestellt nach r:

2r = 1 + s - x1   [mm] \Rightarrow [/mm]      r = 0,5 + 0,5s - 0,5x1

Eingesetzt in x2 und x3:

x2 = 1,5 - 2,5s + 0,5 x1
x3 = 0,5 + 3,5s - 0,5x1

x2 nach S aufgelöst :

s = 0,6 + 0,2x1 - 0,4x2

In x3 eingesetzt:

x3= 2,6+0,2x1-1,4x2

Und jetzt noch umgestellt :

-0,2x1+1,4x2+x3=2,6

Stimmt das? :)

Bezug
                                                        
Bezug
Ebenenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Do 03.01.2013
Autor: M.Rex

Hallo


> Super, freut mich sehr, dass das eine mögliche richtige
> Antwort ist :)
>
> Also meine Ebene E in Koordinatenform würde so aussehen:
>  
> E [mm]\vec{x}:[/mm] -0,2x1+1,4x2+x3=2,6

Das stimmt so nicht. Der Normalenvektor, den du aus dieser Koordinatenform ablesen kannst, steht nicht senkrecht auf den Richtungsvektoren, das muss er aber. Tut er das, hast du mit großer Wahrscheinlichkeit korrekt gerechnet.

>  
> Meine Rechnung dazu:
>  
> E [mm]\vec{x}[/mm] = [mm]\vektor{1\\ 1\\ 0}[/mm] + [mm]r\* \vektor{-2\\ 1\\ 1}[/mm] + [mm]s\* \vektor{1\\ -3\\ 3}[/mm]
>  
> x1= 1-2r+s
>  x2= 1+r-3s
>  x3= 0 + r + 3s

Du hast dir hier den kompliziertesten Weg vorgenommen, den du hier nutzen kannst, du hast aus Gleichung 1 die einzige Variabe eliminert, bei der ein Koeffizient vorhanden ist.
Wenn du schon mit Gleichung 1 beginnst, löse diese doch nach s auf, dann musst du nicht noch dividieren, es gilt:
[mm] s=x_{1}-1+2r [/mm]

Ersetze damit dann s in den anderen beiden Gleichungen, die Klammern aber nicht vergessen.



Dieses Gleichungen kannst du besser mit dem Additionsverfahren lösen.

[mm]\begin{vmatrix}x= 1-2r+s\\ y= 1+r-3s\\ z= 0 + r + 3s\end{vmatrix}[/mm]

[mm]\stackrel{I\cdot3}{\Leftrightarrow}\begin{vmatrix}3x= 3-6r+3s\\ y= 1+r-3s\\ z= 0 + r + 3s\end{vmatrix}[/mm]

[mm]\stackrel{I+II;I-III}{\Leftrightarrow}\begin{vmatrix}3x= 3-6r+3s\\ 3x+y= 4-5r\\ 3x-z=3-7r\end{vmatrix}[/mm]

[mm]\stackrel{II\cdot7;III\cdot5}{\Leftrightarrow}\begin{vmatrix}3x= 3-6r+3s\\ 21x+7y= 28-35r\\ 15x-5z=15-35r\end{vmatrix}[/mm]

[mm]\stackrel{II-III}{\Leftrightarrow}\begin{vmatrix}3x= 3-6r+3s\\ 21x+7y= 28-35r\\ 7x+7y+5z=7\end{vmatrix}[/mm]


>  
> Umgestellt nach r:
>  
> 2r = 1 + s - x1   [mm]\Rightarrow[/mm]      r = 0,5 + 0,5s - 0,5x1
>  
> Eingesetzt in x2 und x3:
>  
> x2 = 1,5 - 2,5s + 0,5 x1
>  x3 = 0,5 + 3,5s - 0,5x1
>  
> x2 nach S aufgelöst :
>  
> s = 0,6 + 0,2x1 - 0,4x2
>  
> In x3 eingesetzt:

hier hast du vermutlich Klammern vergessen.

>  
> x3= 2,6+0,2x1-1,4x2
>  
> Und jetzt noch umgestellt :
>  
> -0,2x1+1,4x2+x3=2,6
>  
> Stimmt das? :)  

Das Einsetzungsverfahren ist für Gleichungssysteme mit mehr als zwei Variablen nicht unbedingt geeignet, dafür gibt es den MBGauß-Algorithmus, dieser ist auch bei []Arndt Brünner hervorragend erklärt.

Eine kleine Bitte noch. Setze die Indizes doch bitte in die Tiefe, du bist inzwischen lange genug dabei, dass du die ein oder andere Formel auch mit dem Formeleditor aufstellen kannst. Das erhöht die Lesbarkeit (und damit auch die Hilfsbereitschaft) ungemein.

Marius


Bezug
                                                                
Bezug
Ebenenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Do 03.01.2013
Autor: GrueneFee

Morgen,

mh naja, ich habe einfach den Weg genommen, welcher auch in meinem Lernheft erklärt wird. Eigentlich hätte ich selbst drauf kommen können das Gauß-Verfahren anzuwenden, aber ok... beim nächsten Mal ;)

Jedoch sehe ich nicht, wie ich bei deiner letzten Matrix weiter machen muss/sollte? Bzw. wäre denn ( auch wenn es der umständlichste Weg war), mein Ergebnis richtig?

Ich werde mir Mühe geben, alles was  mit dem Formeleditor machbar ist auch umzusetzen :)

Bezug
                                                                        
Bezug
Ebenenbestimmung: Warum so kompliziert?
Status: (Antwort) fertig Status 
Datum: 11:55 Do 03.01.2013
Autor: Endorphin

Weshalb überhaupt den umständlichen Weg über den Gauß-Algorithmus gehen?
Über die Normalengleichung gelangst du doch viel schneller an die Koordinatenform der Ebene:

Bei gegebener Ebene
E: [mm] \vec{x} [/mm] = [mm] \vec{p} [/mm] + [mm] r*\vec{r} +s*\vec{s} [/mm]
[mm] \gdw [/mm] E: [mm] \vec{x} [/mm] = [mm] \vektor{1 \\ 1 \\ 0} [/mm] + [mm] r*\vektor{-2 \\ 1 \\ 1} +s*\vektor{1 \\ -3 \\ 3} [/mm]

ist der Normalenvektor der Ebene doch einfach das Kreuzprodukt der Richtungsvektoren [mm] \vec{r} [/mm] und [mm] \vec{s}: [/mm]
[mm] \vec{n} [/mm] = [mm] \vec{r} \times \vec{s} [/mm]

Die Normalenform lautet also:

E: [ [mm] \vec{x} [/mm] - [mm] \vec{p} [/mm] ] * [mm] \vec{r}\times\vec{s} [/mm] = 0
[mm] \gdw [/mm] E: [ [mm] \vec{x} [/mm] - [mm] \vec{p} [/mm] ] * [mm] \vec{n} [/mm] = 0

Daraus lässt sich dann ganz leicht die Koordinatenform ermitteln:

E: [mm] n_1(x_{1} [/mm] - [mm] p_1) [/mm] + [mm] n_2(x_2 [/mm] - [mm] p_2) [/mm] + [mm] n_3(x_3 [/mm] - [mm] p_3) [/mm] = 0

...noch ausklammern und zusammenfassen und du wärst fertig.

Bezug
                                                                                
Bezug
Ebenenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 Di 08.01.2013
Autor: GrueneFee

Das klingt nach einer wunderbaren Lösungsmöglichkeit :)

So, ich habe mich also hingesetzt und erst einmal das Kreuzprodukt ausgerechnet... wäre bei mir dann [mm] \vektor{0\\7\\5} [/mm]

Dann hab ich mir nochmal die Formel aufgeschrieben und festgellt das ich ja gar nicht weiß was ich für [mm] \vec{x} [/mm] einsetzen muss?

Es heißt doch n1(x1-p1)...... aber woher weiß ich denn was x1, x2 usw. ist?

:/

Bezug
                                                                                        
Bezug
Ebenenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Di 08.01.2013
Autor: MathePower

Hallo GrueneFee,

> Das klingt nach einer wunderbaren Lösungsmöglichkeit :)
>
> So, ich habe mich also hingesetzt und erst einmal das
> Kreuzprodukt ausgerechnet... wäre bei mir dann
> [mm]\vektor{0\\7\\5}[/mm]
>  


Hier meinst Du wohl [mm]\vektor{\red{6}\\7\\5}[/mm]

> Dann hab ich mir nochmal die Formel aufgeschrieben und
> festgellt das ich ja gar nicht weiß was ich für [mm]\vec{x}[/mm]
> einsetzen muss?
>


[mm]\vec{x}[/mm]  ist ein Punkt auf der Ebene.


> Es heißt doch n1(x1-p1)...... aber woher weiß ich denn
> was x1, x2 usw. ist?
>


[mm]x_{1}, \ x_{2}, \ x_{3}[/mm] läßt Du so stehen.


> :/


Gruss
MathePower

Bezug
                                                                                                
Bezug
Ebenenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Mi 09.01.2013
Autor: GrueneFee

Ups, natürlich muss es 6 und nicht 0 heißen. Böse Vorzeichen ;)

So, hab das mal ausgerechnet und folgendes herausbekommen :

5x3 + 7x2 + 6x1 - 13 = 0

Stimmt das?

Bezug
                                                                                                        
Bezug
Ebenenbestimmung: sortieren
Status: (Antwort) fertig Status 
Datum: 13:26 Mi 09.01.2013
Autor: Roadrunner

Hallo GrüneFee!


Das sieht gut aus. [ok]

Aber vielleicht noch etwas sortieren zu:

$E \ : \ [mm] 6*x_1+7*x_2+5*x_3 [/mm] -13 \ = \ 0$


Gruß vom
Roadrunner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de