www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Ebenengleichung, Parameterform
Ebenengleichung, Parameterform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenengleichung, Parameterform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Mi 21.11.2007
Autor: itse

Aufgabe
1. Eine Ebene E ist durch den Punkt A(0|0|3) und die Richtungsvektoren [mm] $\vec [/mm] u= [mm] \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} [/mm] $und [mm] $\vec [/mm] v= [mm] \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ [/mm] bestimmt. Geben Sie die Gleichung der Ebene E in Parameterform an.

2. Erstellen Sie die Parametergleichung der Ebene E, in der die Punkte A(0|-1|1), B(-2|0|-2) und C(1|2|3) liegen.

3. Geben Sie die Parameterform einer Ebene P an, die parallel zur Ebene E aus Aufgabe 1 ist und den Punkt A(0|-1|2) enthält.

Hallo Zusammen,

hier meine Ergebnisse:

1. der Punkt A ist der Ortsvektor der Ebene und die beiden Richtungsvektoren spannen die Ebene sozusagen auf. Also:

$E: [mm] \vec [/mm] x = [mm] \vec [/mm] a + [mm] \lambda \vec [/mm] u + [mm] \mu \vec [/mm] v$

$E: [mm] \vec [/mm] x = [mm] \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} [/mm] + [mm] \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} [/mm] + [mm] \mu \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ [/mm]

das müsste die Ebenengleichung E sein.


2.
Die Punkte sollen innerhalb der Ebene liegen. Also definiere ich den Punkt A als Ortsvektor und ziehe diesen von B und C ab:

$E: [mm] \vec [/mm] x = [mm] \vec [/mm] a + [mm] \lambda (\vec [/mm] b - [mm] \vec [/mm] a) + [mm] \mu (\vec [/mm] c - [mm] \vec [/mm] a)$

$E: [mm] \vec [/mm] x = [mm] \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} [/mm] + [mm] \lambda (\begin{pmatrix} -2 \\ 0 \\ -2 \end{pmatrix} [/mm] - [mm] \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}) [/mm] + [mm] \mu (\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} [/mm] - [mm] \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix})$ [/mm]

$E: [mm] \vec [/mm] x = [mm] \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} [/mm] + [mm] \lambda \begin{pmatrix} -2 \\ 1 \\ -3 \end{pmatrix} [/mm] + [mm] \mu \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ [/mm]

passt dies so?

oder muss ich dies mit einem Gleichugssystem lösen, zum Beispiel so:

$0  = [mm] \vec [/mm] a + [mm] \lambda \vec [/mm] b + [mm] \mu \vec [/mm] c$
$-1 = [mm] \vec [/mm] a + [mm] \lambda \vec [/mm] b + [mm] \mu \vec [/mm] c$
$1  = [mm] \vec [/mm] a + [mm] \lambda \vec [/mm] b + [mm] \mu \vec [/mm] c$

und dies dann für die anderen beiden Punkte auch machen. Aber wie komme ich dann von diesem auf die Ebene?


3.
Damit die Gerade Punkt A enthält, wird dieser zum Ortsvektor. Nun muss die Ebene noch parallel zu der aus Aufgabe 1, um dies zu erhalten, nehme ich einfach die gleichen Richtungsvektoren wie die Ebene E aus Aufgabe 1:

$P: [mm] \vec [/mm] x = [mm] \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} [/mm] + [mm] \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} [/mm] + [mm] \mu \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ [/mm]

passt dies so? Vielen Dank im Voraus.

        
Bezug
Ebenengleichung, Parameterform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Mi 21.11.2007
Autor: Sierra

Hallo.

Alles richtig, so wie du es gemacht hast. In Aufgabe 2 brauchst du kein Gleichungssystem lösen, wie du es schon richtig vermutet hast.

Gruß Sierra

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de