www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Ebenengleichung aufstellen
Ebenengleichung aufstellen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenengleichung aufstellen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:38 So 07.08.2005
Autor: juriman

Ermitteln Sie die Gleichung der Ebene, die durch den Punkt P1(-1,-1,2) geht und senkrecht auf den Ebenen E1 und E2 steht.

E1 :  [mm] \vektor{1 \\ -\blue{2} \\ 1} [/mm] * [mm] \vec{r} [/mm]  = 4
E2 :  [mm] \vektor{1 \\ 2 \\ -2} [/mm] * [mm] \vec{r} [/mm]  = -4

Edit: Normalenvektor von E1 korrigiert. Loddar


Wie gehe ich da genau vor? Was kann ich aus den Gleichungen herraus lesen?
Bitte um einen vollständigen und genauen Lösungsweg.
(Da morgen die Klausur ist, ist es für kleine Hilfreiche Tips leider zu spät)

Danke

        
Bezug
Ebenengleichung aufstellen: Ansätze (edit.)
Status: (Antwort) fertig Status 
Datum: 21:01 So 07.08.2005
Autor: Loddar

Hallo juriman!


In welcher Darstellung soll denn Deine gesuchte Ebenengleichung angegeben werden?


In der Paramaterform $E \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \vec{p} [/mm] + [mm] \lambda*\vec{u} [/mm] + [mm] \kappa*\vec{v}$ [/mm] bist Du ganz schnell fertig, weil Du für den Stützvektor [mm] $\vec{p}$ [/mm] den Ortsvektor des gegebenen Punktes einsetzen kannst.

Die Richtungsvektoren [mm] $\vec{u}$ [/mm] und [mm] $\vec{v}$ [/mm] werden genau durch die beiden Normalenvektoren [mm] $\vektor{1 \\ -2 \\ 1}$ [/mm] bzw. [mm] $\vektor{1 \\ 2 \\ -2}$ [/mm] der beiden Ebenen [mm] $E_1$ [/mm] und [mm] $E_2$ [/mm] gebildet.


Soll die gesuchte Ebene auch in der Normalform $E \ : \ [mm] \vec{n}*\vec{x} [/mm] \ = \ d$ dargestellt werden, benötigst Du einen Normalenvektor [mm] $\vec{n} [/mm] \ = \ [mm] \vektor{n_x \\ n_y \\ n_z}$. [/mm]

Dieser muss dann jeweils auf die beiden Normalenvektoren der anderen beiden Ebenen senkrecht stehen.


Es muss also gelten mit dem Skalarprodukt:

[mm] $\vektor{n_x \\ n_y \\ n_z}*\vektor{1 \\ -2 \\ 1} [/mm] \ = \ [mm] 1*n_x +(-2)*n_y+1*n_z [/mm] \ = \ [mm] n_x-2n_y+n_z [/mm] \ = \ 0$

[mm] $\vektor{n_x \\ n_y \\ n_z}*\vektor{1 \\ 2 \\ -2} [/mm] \ = \ [mm] 1*n_x +2*n_y+(-2)*n_z [/mm] \ = \ [mm] n_x+2n_y-2n_z [/mm] \ = \ 0$


Durch Addition diese beiden Gleichungen kannst Du [mm] $n_x$ [/mm] eliminieren und nach einer der anderen Komponenten umstellen.
Anschließend wählst Du Dir für einen der beiden Komponenten einen beliebigen Wert und berechnest die anderen beiden Werte ...


Gruß
Loddar


Bezug
        
Bezug
Ebenengleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 So 07.08.2005
Autor: juriman

Hm, also die Lösung lautet: 2x + 3y + 4z = 3
Wie kommt man auf diese Darstellung?

Bezug
                
Bezug
Ebenengleichung aufstellen: Rückfrage zur Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 So 07.08.2005
Autor: Loddar

Hallo juriman!


Auf dieses Ergebnis komme ich nicht ...


Kannst Du vielleicht die Aufgabenstellung oben nochmal kontrollieren?

Heißt der Normalenvektor der Ebene [mm] $E_1$ [/mm] vielleicht [mm] $\vektor{1 \\ -\red{2} \\ 1}$ [/mm]   ??


Gruß
Loddar


Bezug
                        
Bezug
Ebenengleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 So 07.08.2005
Autor: juriman

oh, ja! hast recht!
entschuldige

Bezug
                                
Bezug
Ebenengleichung aufstellen: Gleichungssystem auflösen
Status: (Antwort) fertig Status 
Datum: 22:03 So 07.08.2005
Autor: Loddar

Hallo juriman!


Ich habe es mal oben in meiner Antwort angepasst ...


Wir hatten also erhalten für unseren gesuchten Normalvektor [mm] $\vec{n}$ [/mm] folgendes Gleichungssystem:

[I]  [mm] $n_x-2*n_y+n_z [/mm] \ = \ 0$

[II] [mm] $n_x+2*n_y-2*n_z [/mm] \ = \ 0$


Durch Subtraktion dieser beiden Gleichungen [II]-[I] erhalten wir:

[mm] $4*n_y [/mm] - [mm] 3*n_z [/mm] \ = \ 0$   [mm] $\gdw$ $n_y [/mm] \ = \ [mm] \bruch{3}{4}*n_z$ [/mm]

Für dieses Gleichungssystem aus zwei Gleichungen und drei Unbaknnten gibt es keine eindeutige Lösung, was auch logisch ist, da es schließlich unendlich viele Vektoren gibt, die auf die genannten Vektoren senkrecht stehen. Diese unterscheiden sich in Länge und Richtung.


Daher wähle ich nun beliebig einen Wert für [mm] $n_z$, [/mm] dabei achte ich darauf, dass wir nur ganzzahlige Ergebnisse erhalten:

[mm] $n_z [/mm] \ := \ 4$   [mm] $\Rightarrow$ $n_y [/mm] \ = \ 3$   [mm] $\Rightarrow$ $n_x [/mm] \ = \ 2$

Unser gesuchter Normalenvektor lautet also: [mm] $\vec{n} [/mm] \ = \ [mm] \vektor{2 \\ 3 \\ 4}$ [/mm]


Nun setzen wir ein in unsere Ebenengleichung:

$E \ : \ [mm] \vec{n}*\vec{x} [/mm] - [mm] \vec{n}*\vec{p} [/mm] \ = \ 0$

[mm] $\gdw$ [/mm]

$E \ : \ [mm] \vektor{2 \\ 3 \\ 4}*\vektor{x \\ y \\ z} [/mm] - [mm] \vektor{2 \\ 3 \\ 4}*\vektor{-1 \\ -1 \\ 2} [/mm] \ = \ 0$


Wenn Du nun diese beiden Skalarprodukte ausmultiplizierst, kommst Du auf Deine genannte Lösung.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de