www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Ebenengleichungen im R^3
Ebenengleichungen im R^3 < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenengleichungen im R^3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 So 13.11.2011
Autor: del1r1um

Aufgabe
Es seien im [mm] $\mathbb{R}^3$ [/mm] die folgenden 4 Punkte gegeben:
$A(1|1|1), B(2|2|2), C(1|0|0), D(3|3|3)$

a) Wie lautet die Gleichung der Ebene E durch A,B und C?
b) In welchem Punkt durchstößt die z-Achse die Ebene E?
c) Was ergibt sich, wenn analog Teilaufgabe a) A,B und D verwendet werden?


Hallo,
Ich habe mich an obiger Aufgabe versucht und habe bei a) auch die richtige Antwort erhalten. Leider habe ich nicht verstanden, wieso ich das tue, was ich tue :-/
Meine Lösung für
a) [mm] $\vec{x} [/mm] = A+r*B-A+s*C-A =  (1|1|1)+r*(1|1|1)+s*(0|-1|-1)$
b) nichts
c) [mm] $\vec{x} [/mm] = A+r*B-A+s*D-A =  (1|1|1)+r*(1|1|1)+s*(2|2|2)$

So wurde mir das von einem Kommilitonen erklärt, aber was da passiert und warum ich das so rechne habe ich nicht verstanden. Zudem ist Aufgabe c) laut Vorlesung nicht lösbar?
Warum nicht?
Bei b) habe ich einfach keine Ahnung was ich machen soll, liegt vermutlich daran, das ich den Hintergrund der Aufgabe nicht verstanden habe.
Ich wäre euch für eine Erklärung sehr dankbar. :-)

        
Bezug
Ebenengleichungen im R^3: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 So 13.11.2011
Autor: M.Rex

Hallo

Ich fürchte, du solltest dich erstmal mit den Grundlagen der Rechnungen mit Vektoren im [mm] \IR^{3} [/mm] vertraut machen. Diese werden bei []poenitz-net gut erklärt.

a)Eine Ebene durch die Punkte A, B und C kann man in folgender Parameterform schreiben:
[mm] E:\vec{x}=\overrightarrow{0A}+\lambda\cdot\overrightarrow{AB}+\mu\cdot\overrightarrow{AC} [/mm]

Das ergibt genau die von dir aufgestellte Ebene.

b)
Die z-Achse kannst du als folgende Gerade auffassen:
[mm] g:\vec{x}=\vektor{0\\0\\0}+\nu\cdot\vektor{0\\0\\1}=\nu\cdot\vektor{0\\0\\1} [/mm]

Schneide diese nun mit E aus Aufgabe a) Das ergibt ein Gleichungsystem in den Parametern [mm] \lambda ,\mu [/mm] und [mm] \nu [/mm] . Dieses löse nun, und setze die "Lösungsparameter" in die Ebene/Gerade ein. Dann bekommt du die Schnittpunkte.

c)
Die drei Punkte A, B und D liegen auf einer Gerade. Bestimme also die Gerade ducht A und B und zeige, dass auch D auf dieser Gerade liegt.

Marius



Bezug
                
Bezug
Ebenengleichungen im R^3: thx
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 So 13.11.2011
Autor: del1r1um

Oki, habs nun verstanden. Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de