www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Ebenes Viereck/ Komplanarität
Ebenes Viereck/ Komplanarität < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenes Viereck/ Komplanarität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mo 10.09.2007
Autor: kleinsnoopy

Aufgabe
Ist das Viereck mit den vier Eckpunkten A, B, C und D eben?

Hallo!
Wenn das Viereck eben sein soll,dann müssten doch auch die Vektoren [mm] \overrightarrow{AB} [/mm] , [mm] \overrightarrow{BC} [/mm] , [mm] \overrightarrow{CD} [/mm] und [mm] \overrightarrow{DA} [/mm] komplanar sein, also auf einer Ebene liegen oder?

Meine Frage ist also: Gilt auch bei vier Vektoren,dass sie komplanar sind, wenn sich mindestens einer von ihnen als Linearkombination der anderen drei Vektoren darstellen lässt? Bzw.,dass die Linearkombination aller vier Vektoren 0 ergibt?

Vielen Dank im Voraus.

        
Bezug
Ebenes Viereck/ Komplanarität: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Mo 10.09.2007
Autor: angela.h.b.


> Ist das Viereck mit den vier Eckpunkten A, B, C und D
> eben?
>  Hallo!
>  Wenn das Viereck eben sein soll,dann müssten doch auch die
> Vektoren [mm]\overrightarrow{AB}[/mm] , [mm]\overrightarrow{BC}[/mm] ,
> [mm]\overrightarrow{CD}[/mm] und [mm]\overrightarrow{DA}[/mm] komplanar sein,
> also auf einer Ebene liegen oder?

Hallo,

ja, so ist das.

>  
> Meine Frage ist also: Gilt auch bei vier Vektoren,dass sie
> komplanar sind, wenn sich mindestens einer von ihnen als
> Linearkombination der anderen drei Vektoren darstellen
> lässt? Bzw.,dass die Linearkombination aller vier Vektoren
> 0 ergibt?

Hallo,

nein, so geht das nicht. Daß es eine Linearkombination der vier Vektoren gibt, die 0 ergibt, hat nichts zu sagen darüber, ob die Vektoren in einer Ebene liegen. Du bewegst Dich ja gerade im [mm] \IR^3. [/mm] Da kann es, wenn man vier Vektoren hat, gar nicht anders sein, als daß es eine nichttriviale Linearkombination gibt, welche Null ergibt. (Stichwort: Basis, Dimension)

Die Ebene ist ein zweidimensionales Gebilde, sie wird aufgespannt von zwei nicht kollinearen Vektoren.
Du nimmst nun 3 Punkte Deines Viereckes (von welchen hoffentlich nicht drei gemeinsam auf einer Geraden iegen) und stellst die Ebenengleichung auf. Anschließend prüfst Du, ob auch der 4.Punkt in dieser Ebene liegt.

Gruß v. Angela




Bezug
        
Bezug
Ebenes Viereck/ Komplanarität: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Mo 10.09.2007
Autor: Somebody


> Ist das Viereck mit den vier Eckpunkten A, B, C und D
> eben?
>  Hallo!
>  Wenn das Viereck eben sein soll,dann müssten doch auch die
> Vektoren [mm]\overrightarrow{AB}[/mm] , [mm]\overrightarrow{BC}[/mm] ,
> [mm]\overrightarrow{CD}[/mm] und [mm]\overrightarrow{DA}[/mm] komplanar sein,
> also auf einer Ebene liegen oder?
>  
> Meine Frage ist also: Gilt auch bei vier Vektoren,dass sie
> komplanar sind, wenn sich mindestens einer von ihnen als
> Linearkombination der anderen drei Vektoren darstellen
> lässt?

Nein, wie Angela bereits erklärt hat, sind im [mm] $\IR^3$ [/mm] mehr als drei Vektoren immer linear abhängig.
Aber es ist wahr (glaube ich), dass die vier Punkte $A,B,C,D$ genau dann in einer Ebene liegen, wenn die drei Vektoren [mm] $\vec{AB}, \vec{AC}, \vec{AD}$ [/mm] linear abhängig sind.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de