www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prozesse und Matrizen" - Eckpunkte eines Bilddreiecks
Eckpunkte eines Bilddreiecks < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eckpunkte eines Bilddreiecks: Idee
Status: (Frage) beantwortet Status 
Datum: 21:08 So 02.09.2012
Autor: JamesBlunt

Aufgabe
Bestimmen Sie die Eckpunkte A`, B` und C`des Bilddreiecks von ABC bei der angegebenen Abbildung.

a) A(1/4), B(-2/5), C(3/7); [mm] \alpha: [/mm] x`= [mm] \pmat{ 2 & 5\\ 7& 9 } [/mm] * x + [mm] \vektor{11 \\ 13} [/mm]

Hallo erstmal..
Also dies ist ein neues Thema, welches wir in der Schule wahrscheinlich erst morgen behandeln..

Doch da ich Dinge eher langsam auffasse, habe ich mir die Aufgabe jetzt schon mal angeguckt..

Meine Idee war es:
Den Punkt A anstelle des Vektors x einzusetzen. Doch da kommen nicht die gewünschten Ergebnisse raus...
Was muss ich machen?

Lg

        
Bezug
Eckpunkte eines Bilddreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 02.09.2012
Autor: leduart

Hallo
ich würde sagen, du setzt für x den Vektor 0A ein, dann ist das richtig. wahrscheinlich hast du einen Rechenfehler, ohne deine Rechnung kann man nichts sagen!
Gruss leduart

Bezug
        
Bezug
Eckpunkte eines Bilddreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 So 02.09.2012
Autor: Plasma12

Soweit ich es betrachten kann, handelt es sich hierbei um eine Abbildungsmatrix.
Den abgebildeten Bildpunkt des Dreieckes müsstest du erhalten, wenn du den gegebenen Punkt z.B. A mit der Matrix multiplizierst, und dann mit dem Vektor addierst. Hier musst du aber beachten, dass bei einer Multiplikation von Matrix und Vektor bestimmte Rechenregel gelten; vielleicht hast du das übersehen. Hier ein Video zur Matrixmultiplikation: http://www.youtube.com/watch?v=L9mSD3UzY28


Bezug
                
Bezug
Eckpunkte eines Bilddreiecks: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Di 11.09.2012
Autor: JamesBlunt

besten Dank!> Soweit ich es betrachten kann, handelt es sich hierbei um
> eine Abbildungsmatrix.
> Den abgebildeten Bildpunkt des Dreieckes müsstest du
> erhalten, wenn du den gegebenen Punkt z.B. A mit der Matrix
> multiplizierst, und dann mit dem Vektor addierst. Hier
> musst du aber beachten, dass bei einer Multiplikation von
> Matrix und Vektor bestimmte Rechenregel gelten; vielleicht
> hast du das übersehen. Hier ein Video zur
> Matrixmultiplikation:
> http://www.youtube.com/watch?v=L9mSD3UzY28
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de