www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenfunktionen eines Operator
Eigenfunktionen eines Operator < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenfunktionen eines Operator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Do 23.05.2013
Autor: piet86

Aufgabe
Gegeben seien die Eigenwerte und Eigenfunktionen eines Operators A,
d.h. [mm] A|phi_{n}> [/mm] = [mm] a_{n}|phi_{n}> [/mm]
Zeigen Sie, dass [mm] phi_{n}> [/mm] auch Eigenfunktion des Operators [mm] e^{A} [/mm] ist und bestimmen Sie den zugehörigen Eigenwert.
Hinweis: Benutzen Sie dazu die Reihenentwicklung
[mm] e^{A} [/mm] = [mm] \summe_{m=0}^{unendlich} \bruch{(A)^{m}}{m!} [/mm]

Die Eigenfunktionen bestimme ich doch aus den Eigenvektoren, die ich wiederum aus den Eigenwerte bekommen.
Mein Problem ist, dass ich das bisher nur für Matrizen gemacht habe und mich schwer tue das auf diese Aufgabe zu übertragen.
Irgendwie muss ich auf eine Matrix kommen.
Könnt ihr mir Ansätze geben, wie die Aufgabe zu lösen ist?

        
Bezug
Eigenfunktionen eines Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Do 23.05.2013
Autor: notinX

Hallo,

> Gegeben seien die Eigenwerte und Eigenfunktionen eines
> Operators A,
>  d.h. [mm]A|phi_{n}>[/mm] = [mm]a_{n}|phi_{n}>[/mm]
>  Zeigen Sie, dass [mm]phi_{n}>[/mm] auch Eigenfunktion des Operators

Du meinst wohl: [mm] $\vert \phi_n\rangle$ [/mm] (Durch Draufklichen siehst Du wie man das schreibt)

> [mm]e^{A}[/mm] ist und bestimmen Sie den zugehörigen Eigenwert.
>  Hinweis: Benutzen Sie dazu die Reihenentwicklung
> [mm]e^{A}[/mm] = [mm]\summe_{m=0}^{unendlich} \bruch{(A)^{m}}{m!}[/mm]

[mm] 'unendlich'=$\infty$ [/mm]

>  Die
> Eigenfunktionen bestimme ich doch aus den Eigenvektoren,
> die ich wiederum aus den Eigenwerte bekommen.

Die Eigenvektoren erhältst Du mit Hilfe der Eigenwerte - nicht aus den Eigenwerten.

>  Mein Problem ist, dass ich das bisher nur für Matrizen
> gemacht habe und mich schwer tue das auf diese Aufgabe zu
> übertragen.
>  Irgendwie muss ich auf eine Matrix kommen.

Man kann zwar einen Operator auch als Matrix schreiben, das ist aber gar nicht notwendig.

>  Könnt ihr mir Ansätze geben, wie die Aufgabe zu lösen
> ist?

Du sollst zeigen, dass [mm] $\vert \phi_n\rangle$ [/mm] Eigenvektor zu [mm] $e^A$ [/mm] ist. Was bedeutet das? Das heißt Du musst zeigen, dass gilt:
[mm] $e^A\vert \phi_n\rangle=u\vert \phi_n\rangle$ [/mm]
mit irgendeinem Eigenwert u, der dann auch noch zu bestimmen ist.
Also fang doch mal mit der linken Seite der Gleichung an und verwende den Hinweis und dann die Voraussetzung.

Gruß,

notinX

Bezug
                
Bezug
Eigenfunktionen eines Operator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Do 23.05.2013
Autor: piet86

Hallo notinx,
danke für die Tips,

Wie du gesagt hast, habe ich zunächst die linke Seite umgeformt:

[mm] \summe_{m=0}^{\infty} \bruch{(A)^{m} \vert \phi_n\rangle}{m!} [/mm]

= [mm] \summe_{m=0}^{\infty} \bruch{(A)^{m-1} (A \vert \phi_n\rangle)}{m!} [/mm]

Somit komme ich zu folgender Gleichung:

[mm] \summe_{m=0}^{\infty} \bruch{(A)^{m-1} (a_{n} \vert \phi_n \rangle)}{m!} [/mm] = [mm] u\vert \phi_n\rangle [/mm]

für m=1 würde dann

[mm] A\vert \phi_n\rangle=a_{n}\vert \phi_n\rangle [/mm]

gelten. Habe ich damit schon gezeigt, dass [mm] \vert \phi_n\rangle [/mm] Eigenfunktion des Operators [mm] e^A [/mm] ist?
Mir ist leider auch noch nicht ganz klar, wie ich auf den zugehörigen Eigenwert u komme.

Gruß
piet

Bezug
                        
Bezug
Eigenfunktionen eines Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Do 23.05.2013
Autor: notinX

Ich bin mir nicht ganz sicher, obs falsch ist ich würde es so aber nicht machen und habe es so auch noch nicht gesehen. Damit ist auf jeden Fall noch nicht gezeigt, dass $ [mm] \vert \phi_n\rangle [/mm] $ Eigenfunktion ist.
Ich geb Dir noch einen Tipp: Schreib mal die ersten paar Summanden der Reihe hin und wende dann $ [mm] \vert \phi_n\rangle [/mm] $ darauf an.

Gruß,

notinX

Bezug
                        
Bezug
Eigenfunktionen eines Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Do 23.05.2013
Autor: Gonozal_IX

Hiho,

> Hallo notinx,
>  danke für die Tips,
>  
> Wie du gesagt hast, habe ich zunächst die linke Seite
> umgeformt:
>  
> [mm]\summe_{m=0}^{\infty} \bruch{(A)^{m} \vert \phi_n\rangle}{m!}[/mm]
>  
> = [mm]\summe_{m=0}^{\infty} \bruch{(A)^{m-1} (A \vert \phi_n\rangle)}{m!}[/mm]

[ok]

> Somit komme ich zu folgender Gleichung:
>  
> [mm]\summe_{m=0}^{\infty} \bruch{(A)^{m-1} (a_{n} \vert \phi_n \rangle)}{m!}[/mm] = [mm]u\vert \phi_n\rangle[/mm]

Das macht doch gar keinen Sinn, was soll dann u sein nach deiner Gleichung?
Dein erster Schritt ist richtig. Nutze dann aus, dass [mm] a_n [/mm] und A kommutieren und mache dein Verfahren weiter, und weiter, und weiter.....
Dann kommst du auch auf etwas, was Sinn macht (wenn du das Ergebnis siehst, weißt du, was ich meine).

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de