www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenräume AB=BA
Eigenräume AB=BA < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenräume AB=BA: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Do 31.10.2013
Autor: mbra771

Aufgabe
Seien $A$ und $B$ diagonalisierbare $n$ x $n$-Matrizen mit den selben Eigenräumen (aber möglicherweise verschiedenen Eigenwerten). Beweisen Sie, dass $AB=BA$ gilt.

Hallo Forum,
bei der letzten Hausarbeit habe ich so gut wie keine Hilfe benötigt. Leider sieht es jetzt gerade etwas anders aus :-(

Also, ich weiß, dass $A$ und $B$ diagonalisierbar sind.
Weiter weiß ich, dass die Eigenräume gleich sind.

Hierbei bin ich mir nicht so sicher. Seien [mm] $S_A$ [/mm] und [mm] $S_B$ [/mm] Invertierbaren Matrizen  mit denen gilt:

[mm] $A=S_A^{-1} D_A S_A$ [/mm] und [mm] $B=S_B^{-1} D_B S_B$ [/mm]

Dann sind [mm] D_A [/mm] und [mm] D_B [/mm] die Diagonalisierungen von A und B.

So wie ich die Aufgabe  verstehe, dann bestehen doch [mm] S_A [/mm] und [mm] S_B [/mm] aus den Eigenvektoren von A und B, wobei ja die Eigenvektoren gleich sein müßten, da diese ja nun das Erzeugendensystem des Eigenraumes bilden.

Ist es dann nicht so, daß sich [mm] S_A [/mm] und [mm] S_B [/mm] nur durch Vertauschung der Spalten unterscheiden müssten?

Würde mich über weitere Gedanken zu der Aufgabe freuen,
Grüße, Micha


        
Bezug
Eigenräume AB=BA: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Do 31.10.2013
Autor: mbra771

Hallo Forum,
ich habe eine Idee entwickelt, könntet Ihr mal gucken, ob ich richtig liege!



Da A und B diagonalisierbar sind, existiert eine invertierbare Matrix S mit der gilt:

[mm] $A=S^{-1}D_A [/mm] S$ und [mm] $B=S^{-1}D_B [/mm] S$

Die Spalten von S bestehen aus den Eigenvektoren von A bzw. B. Da die Eigenräume von A und B gleich sind, sind auch die Eigenvektoren von A und B gleich. Damit kann S auch für beide Diagonalisierungen von A und B gleich sein.

Sei [mm] D_A [/mm] die Diagonalisierung, die aus A gebildet wird und sei [mm] D_B [/mm] die Diagonalisierung von B, dann gilt:

[mm] $A*B=S^{-1}*D_A [/mm] * S [mm] *S^{-1} [/mm] * [mm] D_B [/mm] * S$       [mm] \gdw [/mm]
[mm] $A*B=S^{-1}*D_A [/mm] * [mm] I_n [/mm] * [mm] D_B [/mm] * S$       [mm] \gdw [/mm]
[mm] $A*B=S^{-1}*D_A [/mm] * [mm] D_B [/mm] * S$       [mm] \gdw [/mm]

Grüße,
Micha
Da die Matritzenmultiplikation von Diagonalmatritzen kommutativ ist gilt:

[mm] $A*B=S^{-1}*D_B [/mm] * [mm] D_A [/mm] * S$       [mm] \gdw [/mm]
[mm] $A*B=S^{-1}*D_B [/mm] * [mm] I_n [/mm] * [mm] D_A [/mm] * S$       [mm] \gdw [/mm]
[mm] $A*B=S^{-1}*D_B [/mm] * S [mm] *S^{-1} [/mm] * [mm] D_A [/mm] * S$       [mm] \gdw [/mm]
$A*B=B*A$  


Bezug
                
Bezug
Eigenräume AB=BA: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Do 31.10.2013
Autor: HJKweseleit

Völlig korrekt!

Bezug
        
Bezug
Eigenräume AB=BA: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Fr 01.11.2013
Autor: fred97

Etwas einfacher: der zugrunde liegende Körper sei K.

Es es gibt eine Basis [mm] b_1,...,b_n [/mm] des [mm] K^n [/mm] und es gibt [mm] r_1,...,r_n,s_1,...,s_n \in [/mm] K mit


  [mm] Ab_j=r_jb_j [/mm] und [mm] Bb_j=s_jb_j [/mm]      (j=1,...,n)

Dann ist [mm] ABb_j=r_js_jb_j=BAb_j [/mm]    (j=1,...,n)

FRED

Bezug
                
Bezug
Eigenräume AB=BA: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:12 Fr 01.11.2013
Autor: mbra771

Hallo,
vielen Dank für die Durchsicht. @ Fred, tja so könnte man es sicher auch machen. Bin ich leider nicht drauf gekommen.
Vielen Dank
Micha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de