www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenraum
Eigenraum < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:06 Mi 28.12.2011
Autor: fernweh

Aufgabe
Geben Sie für folgende Matrix F von [mm] $\IR^3$ [/mm] in sich alle Eigenwerte der Abbildungsmatrix an und eine Basis für jeden Eigenraum. Gibt es eine Basis, in welcher die Matrixdarstellung der Abbildung Diagonalform hat? Wenn ja, welche?

F: [mm] \pmat{ x_1 \\ x_2 \\ x_3} \mapsto \pmat{ x_1+x_2+x_3 \\ 2x_2+x_3 \\ 2x_2+3x_3} [/mm]

Hallo zusammen

Kann da mal jemand drüber schauen, ob ich das richtig verstanden habe (ich habe abundzu ein Durcheinander mit den Begriffen und Lösungen sind leider nicht vorhanden ...).

Es ist [mm] A=\pmat{1 && 1 && 1 \\ 0 && 2 && 1 \\ 0 && 2 && 3} [/mm]

Die verlangten Eigenwerte sind:
[mm] $\lambda_1=\lambda_2=1$ [/mm] und [mm] $\lambda_3=4$ [/mm] da [mm] det(A-\lambda*I)=-(\lambda -1)(\lambda-4)(\lambda-1)$ [/mm]

Die Eigenräumen sind somit durch die Eigenvektoren aufgespannt, und die Eigenvektoren sind somit die Basis für die jeweilige Basis, d.h.
Eigenraum für [mm] $\lambda=1$: $E_1=span\{\pmat{ 0 \\ -1 \\ 1}, \pmat{1 \\ 0 \\ 0}\}$ [/mm]
Eigenraum für [mm] $\lambda=4$: $E_4=span\{\pmat{ 1 \\ 1 \\ 2}\} [/mm]

Und zuletzt die Basis, in der die Matrixdarstellung der Abbildung Diagonalform hat, ist dann einfach die Basis mit den Eigenvektoren, d.h.
[mm] \pmat{ 0 \\ -1 \\ 1}, \pmat{1 \\ 0 \\ 0}, \pmat{ 1 \\ 1 \\ 2} [/mm]
Dies ist möglich, weil die Matrix halbeifnach ist, d.h. die geometrische Vielfachkeit jeweils der algebraischen Vielfachkeit der Eigenwerte entspricht ...

Dann ist die Abbildungsmatrix
[mm] $A'=\pmat{1 && 0 && 0 \\ 0 && 1 && 0 \\ 0 && 0 && 4} [/mm]
also in Diagonalform.

VIele Grsse und Danke schon im voraus!

        
Bezug
Eigenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Mi 28.12.2011
Autor: schachuzipus

Hallo fernweh,


> Geben Sie für folgende Matrix F von [mm]\IR^3[/mm] in sich alle
> Eigenwerte der Abbildungsmatrix an und eine Basis für
> jeden Eigenraum. Gibt es eine Basis, in welcher die
> Matrixdarstellung der Abbildung Diagonalform hat? Wenn ja,
> welche?
>  
> F: [mm]\pmat{ x_1 \\ x_2 \\ x_3} \mapsto \pmat{ x_1+x_2+x_3 \\ 2x_2+x_3 \\ 2x_2+3x_3}[/mm]
>  
> Hallo zusammen
>  
> Kann da mal jemand drüber schauen, ob ich das richtig
> verstanden habe (ich habe abundzu ein Durcheinander mit den
> Begriffen und Lösungen sind leider nicht vorhanden ...).
>
> Es ist [mm]A=\pmat{1 && 1 && 1 \\ 0 && 2 && 1 \\ 0 && 2 && 3}[/mm] [ok]
>  
> Die verlangten Eigenwerte sind:
>  [mm]\lambda_1=\lambda_2=1[/mm][/mm] und [mm]\lambda_3=4[/mm][/mm] da
> [mm]det(A-\lambda*I)=-(\lambda -1)(\lambda-4)(\lambda-1)$[/mm] [ok]
>  
> Die Eigenräumen sind somit durch die Eigenvektoren
> aufgespannt, und die Eigenvektoren sind somit die Basis
> für die jeweilige Basis, d.h.
>  Eigenraum für [mm]\lambda=1[/mm]: [mm]E_1=span\{\pmat{ 0 \\ -1 \\ 1}, \pmat{1 \\ 0 \\ 0}\}[/mm] [ok]
>  
> Eigenraum für [mm]\lambda=4[/mm]: [mm] $E_4=span\{\pmat{ 1 \\ 1 \\ 2}\}[/mm] [/mm] [ok]
>  
> Und zuletzt die Basis, in der die Matrixdarstellung der
> Abbildung Diagonalform hat, ist dann einfach die Basis mit
> den Eigenvektoren, d.h.
>  [mm]\pmat{ 0 \\ -1 \\ 1}, \pmat{1 \\ 0 \\ 0}, \pmat{ 1 \\ 1 \\ 2}[/mm]
>  
> Dies ist möglich, weil die Matrix halbeifnach ist, d.h.
> die geometrische Vielfachkeit jeweils der algebraischen
> Vielfachkeit der Eigenwerte entspricht ...
>  
> Dann ist die Abbildungsmatrix
>  [mm]$A'=\pmat{1 && 0 && 0 \\ 0 && 1 && 0 \\ 0 && 0 && 4}[/mm]
>  also
> in Diagonalform.

Jo!

>  
> VIele Grsse und Danke schon im voraus!

Gruß

schachuzipus


Bezug
                
Bezug
Eigenraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 Mi 28.12.2011
Autor: fernweh

Hallo

VIelen Dank für deine prompte Antwort :)

Gruess

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de