www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Eigenraum, Matrix, zykl.Vektor
Eigenraum, Matrix, zykl.Vektor < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraum, Matrix, zykl.Vektor: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:19 Do 18.05.2006
Autor: sonnenfee23

Aufgabe
Ein vektor v [mm] \in \IR [/mm] (hoch n) heiße zyklisch bzgl. Matrix A [mm] \in [/mm] Mat(n, [mm] \IR), [/mm] wenn die Menge {A^jv | j [mm] \in [/mm] {0,... n-1}} eine Basis des [mm] \IR^n [/mm] ist.
Zeige, dass jeder Eigenraum [mm] Eig(\lambda) [/mm] := [mm] ker(A-\lambda [/mm] id) einer Matrik A mit einem zyklischen Vektor höchstens Dimension 1 hat.

Mir fehlt jegliche Idee es zu beweisen. Hab mir überlegt, dass ich zeigen muss, dass v Erzeuger der Bassis ist, bin mir aber nicht sicher und dann eine Folgerung aus Algebra anwenden kann " falls dim(eig) = n -> f [mm] \in [/mm] End(eig) hat max. n verschiedene EW im Raum".
Bin mir aber überhaupt ned sicher...

Lg uschi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenraum, Matrix, zykl.Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 01:25 Fr 19.05.2006
Autor: Micha

Hallo!
> Ein vektor v [mm]\in \IR[/mm] (hoch n) heiße zyklisch bzgl. Matrix
> A [mm]\in[/mm] Mat(n, [mm]\IR),[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

wenn die Menge {A^jv | j [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{0,...

> n-1}} eine Basis des [mm]\IR^n[/mm] ist.
>  Zeige, dass jeder Eigenraum [mm]Eig(\lambda)[/mm] := [mm]ker(A-\lambda[/mm]
> id) einer Matrik A mit einem zyklischen Vektor höchstens
> Dimension 1 hat.
>  Mir fehlt jegliche Idee es zu beweisen. Hab mir überlegt,
> dass ich zeigen muss, dass v Erzeuger der Bassis ist, bin
> mir aber nicht sicher und dann eine Folgerung aus Algebra
> anwenden kann " falls dim(eig) = n -> f [mm]\in[/mm] End(eig) hat
> max. n verschiedene EW im Raum".
>  Bin mir aber überhaupt ned sicher...
>  

Kann es sein dass die Aufgabenstellung heißen soll, dass der Raum und nicht der Eigenraum Dimension 1 hat?.

Weil wenn ein zyklisches Vektor c in [mm]Eig(\lambda)[/mm] liegt, heißt das ja, dass

[mm] $B=\{c, \lambda c, \lambda^2 c, ... , \lambda^{n-1} c \}$ [/mm] eine Basis des [mm] $\IR^n$ [/mm] ist.

Da diese aber nur für n=1 linear unabhängig sind, folgt die Behauptung.

Anmerkung: ist [mm] $\IR^n$ [/mm] 1-dimensional, so auch jeder Untervektorraum, wie z.B. [mm]Eig(\lambda)[/mm]

Gruß Micha ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de