www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Eigenraum berechnen
Eigenraum berechnen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraum berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Do 08.04.2010
Autor: ATDT

Aufgabe
Entscheiden Sie, ob die reellen Matrizen A und B diagonalisierbar sind.

A= [mm] \pmat{ 1 & 16 & -8 \\ 0 & 1 & 0 \\ 0 & -4 & 3 }, [/mm]
B= [mm] \pmat{ 1 & 16 & -8 \\ 0 & 1 & 0 \\ 0 & 4 & 3 } [/mm]

Ist A diagonalisierbar?

Ist B diagonalisierbar?

Hallo liebe Mathe-Freunde,

ich habe Probleme bei der Bestimmung der Eigenräume.
Die Eigenwerte sind durch Lösen des char. Polynoms kein Problem.

Für A sind die Eigenwerte: 1 und 3

Eine Musterlösung habe ich hier vor mir liegen jedoch kann ich sie nicht nachvollziehen.
Nach was wird aufgelöst ? x, y, z? also für das Ergebnis des Eigenraums.

Hier ein Ausschnitt aus der Musterlösung:

v = [mm] (x,y,z)^t [/mm] liegt im Eigenraum zum Eigenwert 1 [mm] \gdw [/mm] Av=v

x + 16y -8z = x
y =  y
-4y + 3z = z

[mm] \gdw [/mm]

16y = 8z
y = y
y = 1/2z

[mm] \gdw [/mm]

z = 2y [mm] \gdw [/mm] v = [mm] (x,y,2y)^t [/mm]

Der Eigenraum zum Eigenwert 1 ist also [mm] span((0,1,2)^t, (1,0,0)^t) [/mm]


Nach was geht man da vor bei der Bestimmung des Eigenraumes?

Danke im Voraus
und LG ATDT

        
Bezug
Eigenraum berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Do 08.04.2010
Autor: Fawkes

Hi,
fangen wir am besten mal langsam an.
Was muss denn gelten, damit eine Matrix diag'bar ist?
Bestimmen wir dann mal die Eigenwerte:
Hierfür gilt:
P(x)=0
P(x) ist das char. Polynom der Matrix und lässt sich wie folgt bestimmen:
P(x)=det(A-xId) für Id (Identität) kann man auch E für Einheitsmatrix schreiben, das ist dem Autor oder der Autorin frei überlassen.
Nehmen wir also mal die Matrix A, dann folgt:
[mm] P(x)=det(\pmat{ 1 & 16 & -8 \\ 0 & 1 & 0 \\ 0 & -4 & 3 }-xId)=det\pmat{ 1-x & 16 & -8 \\ 0 & 1-x & 0 \\ 0 & -4 & 3-x }=... [/mm]
Hier muss jetzt also die Determinante berechnet werden. Da es nur eine 3x3 Matrix ist, ist dies relativ simple und bleibt dir überlassen.
Dein Ergebnis musst du dann gleich 0 setzen, also die Nullstellen des char. Polynoms bestimmen. Wenn du das dann gemacht hast, gucken wir uns die Eigenräume an ok?
Gruß Fawkes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de