www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenraumbestimmung
Eigenraumbestimmung < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraumbestimmung: Rueckfrage
Status: (Frage) beantwortet Status 
Datum: 21:53 Sa 05.02.2011
Autor: Coup

Aufgabe
[mm] \pmat{ 8 & 0&-5 \\ 0 & 11&0\\-8&0&5 }\pmat{ x \\ y\\z }=\pmat{ 0 \\ 0\\0 } [/mm]

Hallo, CP und Eigenwerte habe ich bereits bestimmt.
Ich stehe hier nur grade auf dem Schlauch. Mein Eigenwert ist [mm] \lambda=10, [/mm] womit ich obige Matrix bestimmt habe.
Um nun den Eigenraum zu bestimmen muss ich mir die Matrix doch als Lgs darstellen oder ?  Mein y ist 0 das ist klar  wegen 11y = 0.
Ich verstehe nicht wie man auf Eigenraum [mm] \pmat{ 5 \\ 0\\8 } [/mm] kommt


lg
Flo

        
Bezug
Eigenraumbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Sa 05.02.2011
Autor: pyw


> [mm]\pmat{ 8 & 0&-5 \\ 0 & 11&0\\-8&0&5 }\pmat{ x \\ y\\z }=\pmat{ 0 \\ 0\\0 }[/mm]
>  
> Hallo, CP und Eigenwerte habe ich bereits bestimmt.
>  Ich stehe hier nur grade auf dem Schlauch. Mein Eigenwert
> ist [mm]\lambda=10,[/mm] womit ich obige Matrix bestimmt habe.
> Um nun den Eigenraum zu bestimmen muss ich mir die Matrix
> doch als Lgs darstellen oder ?  Mein y ist 0 das ist klar  
> wegen 11y = 0.

:-)

>  Ich verstehe nicht wie man auf Eigenraum [mm]\pmat{ 5 \\ 0\\8 }[/mm]
> kommt

[mm] \pmat{ 5 \\ 0\\8 } [/mm] ist eine Basis des Eigenraums, denn [mm] \pmat{ 8 & 0&-5 \\ 0 & 11&0\\-8&0&5 }\pmat{ 5 \\ 0\\8 }=\vec{0}. [/mm] Das kann man bei der Matrix auch noch recht leicht raten, wenn man das sieht.
Sonst kannst du den Nullraum einer Matrix bestimmen, indem du das Gauß'sche Eliminationsverfahren auf die Zeilen anwendest: Also Matrix in Zeilenstufenform bringen. Dann von den freien Variablen immer eine auf 1 und die anderen auf 0 setzen und die abhängigen ermitteln. So erhälst du für jede frei wählbare Variable einen Basisvektor des Nullraums.

>  
>
> lg
>  Flo

Gruß, pyw

Bezug
                
Bezug
Eigenraumbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Sa 05.02.2011
Autor: Coup

naja viel gauss is hier nicht.
dritte Zeile+erste Zeile und habe
8x+0y-5 z =0

und nun ?
verstehe nicht was du mit freien Variablen ,1 und 0 meinst..

Bezug
                        
Bezug
Eigenraumbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Sa 05.02.2011
Autor: pyw


> naja viel gauss is hier nicht.
>  dritte Zeile+erste Zeile und habe
>  8x+0y-5 z =0
>  
> und nun ?

Daran siehst du doch direkt die Abhängigkeit der ersten und dritten Komponente, die sich auch im Basisvektor wiederfindet

>  verstehe nicht was du mit freien Variablen ,1 und 0
> meinst..

Das war eher für den allgemeinen Fall gedacht ;-)

Gruß, pyw

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de