www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Eigenschaften von Abbildungen
Eigenschaften von Abbildungen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften von Abbildungen: Injektivität usw. beweisen
Status: (Frage) beantwortet Status 
Datum: 14:37 Fr 13.10.2006
Autor: WIler

Aufgabe
Man untersuche, ob die angegebenen Abbildungen f injektiv, surjektiv oder bijektiv sind:

a) f: [mm] \IN \to \IN, [/mm] n [mm] \mapsto [/mm] 2n + 1
b) f: [mm] \IZ \to \IZ, [/mm] z [mm] \mapsto [/mm] -z + 3
c) f: [mm] \IQ \to \IQ, [/mm] q [mm] \mapsto [/mm] 5q + 9
d) f: [mm] \IR \to \IR, [/mm] r [mm] \mapsto [/mm] (r-1)(r-2)(r-3)

Hallo,

ich habe gerade angefangen Wirtschaftsinformatik zu studieren und habe einige Verständnisprobleme mit Mathematik (wie wohl die meisten Studienbeginner).

Ich hoffe ich bin hier im richtigen Forum gelandet; zumindest steht Algebra und Diskrete Mathematik auf meinem Lehrbuch.

Das Buch ist uns als Vorbereitsungslektüre für das Modul empfohlen worden, es wird aber nur kurz etwas zu Injektivität usw geschrieben, keine Beispiele für die Beweisführung.

Nun haben wir die folgende Aufgabe bekommen. Ich könnte jetzt solange durch Ausprobieren versuchen einen Fall zu finden der die Eigenschaft belegt oder widerlegt. Das halte ich nicht für sehr sinnvoll.

Gibt es nicht irgendeine Beweismethode, mit der ich das ganz formal beweisen kann?

Für eine Beispiellösung von a) wäre ich echt dankbar.

Gruß
WIler

        
Bezug
Eigenschaften von Abbildungen: Tipp
Status: (Antwort) fertig Status 
Datum: 00:44 Sa 14.10.2006
Autor: leonhard

Schlag zuerst die Definition von Injektivität und Surjektivität nochmal nach und versuche meine nicht formalen Definitionen darin zu erkennen.
Eine Funktion ist injektiv, wenn zwei verschiedene Argumente verschiedene Resultate haben.
Eine Funktion ist surjektiv, wenn alle möglichen Zielwerte erreicht werden.

Tipp zu a) was ist die Bildmenge?
Tipp zu d) betrachte r=1 und r=2

Um zu zeigen, dass $f:X [mm] \to [/mm] Y$ injektiv ist, beginnst Du mit "Sei [mm] $x_1 \in [/mm] X$, [mm] $x_2\in [/mm] X$, [mm] $f(x_1)=f(x_2)$." [/mm]

Um zu zeigen, dass $f:X [mm] \to [/mm] Y$ surjektiv ist, beginnst Du mit "Sei $y [mm] \in [/mm] Y$."

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de