www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Eigenschaften von Relationen
Eigenschaften von Relationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften von Relationen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:07 Do 10.11.2005
Autor: Doreen

Hallo.
Ich hoffe, jemand kann mir mit folgenden Aufgaben weiterhelfen. Den
größeren Teil habe ich bereits selbst herausgefunden... aber bei den
folgenden Sachen komme ich nicht weiter.

R:={(m,n) [mm] \in \IN [/mm] x [mm] \IN [/mm] | m+n ist eine gerade Zahl}

R:={(m,n) [mm] \in \IN [/mm] x [mm] \IN [/mm] | [mm] m^{2} [/mm] | n}

Hierzu sollen wir schauen, welche Eigenschaften die Relationen haben.
Reflexivität, Transitivität, Antisymmetrie und/oder Totalität.

Mein Ansatz zum ersten R: die Paare m+n sollen gerade Zahl sein.
d.h. m und n müssen gerade Zahl sein bis auf die Ausnahme m=n und beide sind 1, also gilt für die Reflexivität m=n nur dann, wenn sie 1 sind.
Allerdings weiß ich nicht, wie man das mathematisch hinschreibt...
Und wie man die anderen Eigenschaften dort nachprüfen soll, ist für mich nicht wirklich nachvollziehbar. Das gleiche gilt für die zweite Relation... bitte, bitte HILFE.

Noch mehr Kopfzerbrechen bereiten mir die nächsten beiden Relationen.

Es sei eine Menge X mit mind. zwei Elementen... Wie verhält sich die
Relation auf P(X). Es sollen die selben Eigenschaften wie oben untersucht werden.

R:= {(A,B) [mm] \in [/mm] P(X) x P(X) | A [mm] \subseteq [/mm] B}

R:={(A,B) [mm] \in [/mm] P(X) x P(X) | Es existiert eine bijektive Abbildung f: A [mm] \to [/mm] B}

Mein Ansatz zur ersten Relation: Menge X besteht aus den beiden Elementen  A und B dabei ist A [mm] \subseteq [/mm] B d.h in A mind. ein gleiches
Element wie in B. P(X)= {{A}, {B}, {A,B}} ... nur wie weiter?
Bei der zweiten Relation check ich gar nichts mehr.

Die letzte Frage: Wir sollen den Beweis für lineare Ordnung bzw angeordnete Körper zeigen das [mm] a^{2} \ge [/mm] 0 ist.

Es wäre lieb, wenn mir jemand wenigstens die Ansätze nahe
bringen könnte, damit wäre mir für den Anfang geholfen, dann
könnte ich selbstständig weitergrübeln.

Vielen Dank im Voraus.
Doreen

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Eigenschaften von Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Fr 11.11.2005
Autor: angela.h.b.

s. Lineare Algebra, da habe ich auf dieselbe Frage geantwortet. g.v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de