www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Eigenschaften von Relationen
Eigenschaften von Relationen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften von Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Mo 11.02.2013
Autor: Mucki1986

Aufgabe
Sei A={a,b,c}. Welche Eigenschaften (r), (s), (t), (as) besitzen die Relationen
R1={(a,a),(b,b)}
R2={(a,b), (b,c), (a,c), (c,a)} ?

Hallo, ich habe zwei Fragen:
1. Stimmt es, dass R1 symmtrisch, transitiv und antisymmetrisch ist?
2. Warum ist R2 nicht transitiv? Das sie die anderen Eigenschaften nicht erfüllt ist mir klar.

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenschaften von Relationen: Transitivität
Status: (Antwort) fertig Status 
Datum: 14:58 Mo 11.02.2013
Autor: kaju35

Hallo Mucki,

zur Frage 2 :
Wenn die Relation transitiv sein soll, muss gelten
[mm] $(b,c)\in [/mm] R$ und [mm] $(c,a)\in [/mm] R$ [mm] $\Rightarrow$ $(b,a)\in [/mm] R$.

Ist das hier der Fall?

Gruß
Kai


Bezug
                
Bezug
Eigenschaften von Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Mo 11.02.2013
Autor: Mucki1986

Nein :) Oh man, vielen Dank!

Kannst du mir bei der ersten Frage auch einen Tipp geben ?

Bezug
                        
Bezug
Eigenschaften von Relationen: Reflexivität
Status: (Antwort) fertig Status 
Datum: 15:12 Mo 11.02.2013
Autor: kaju35

Hallo Mucki,

für die anderen Eigenschaften empfehle ich Dir
einen Blick ins Skript zu werfen. Nur so viel :

Die Relation ist (was Du nicht in Betracht gezogen
hast) reflexiv. Was sie hingegen nicht ist, ist
antisymmetrisch. Antisymmetrisch bedeutet ja :
[mm] $(a,b)\in R\Rightarrow(b,a)\notin [/mm] R$

Gruß
Kai

Bezug
                                
Bezug
Eigenschaften von Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Mo 11.02.2013
Autor: Mucki1986

Ich dachte sie ist nicht reflexiv, weil (b,b) fehlt. Die Antisymmetrie habe ich angezweifelt, weil sie ja symmetrisch und keine Gleichheitsrelation ist.

Bezug
                                        
Bezug
Eigenschaften von Relationen: Reflexivität
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 Mo 11.02.2013
Autor: kaju35

Hallo Mucki,

> Ich dachte sie ist nicht reflexiv, weil (b,b) fehlt.

laut Aufgabenstellung ist [mm] $(b,b)\in [/mm] R1$. Meintest
Du etwa, dass $(c,c)$ fehlt? Wie auch immer,
meines Wissens nach ist sogar die Relation, die
durch die leere Menge gegeben ist, reflexiv (bitte hier
im Zweifelsfall um Verbesserung).

> Die Antisymmetrie habe ich angezweifelt, weil sie ja
> symmetrisch und keine Gleichheitsrelation ist.  

Das verstehe ich nicht.

Gruß
Kai


Bezug
                                                
Bezug
Eigenschaften von Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mo 11.02.2013
Autor: Mucki1986

Sorry, ich habe mich der Aufgabenstellung verschrieben, es muss heißen R1={(a,a),(c,c)}

zu (as)
(a,b) [mm] \in [/mm] R [mm] \wedge [/mm] a=b [mm] \Rightarrow [/mm] nicht antisymmetrisch, weil eine Bedingung nicht erfüllt ist.

Oder nicht ist das dieser Fall, dass man aus etwas falschen nur etwas wahres folgern kann?


Bezug
                                                        
Bezug
Eigenschaften von Relationen: Antisymmetrie
Status: (Antwort) fertig Status 
Datum: 15:43 Mo 11.02.2013
Autor: kaju35

Hallo Mucki,

schau Dir noch einmal die Definition von "antisymmetrisch"
im meinem letzten Post an und dann vergleiche das mit
den Elementen in $R2$. Gibt es dort ein Element, für das
gilt : $(x,y) [mm] \in [/mm] R2$ und [mm] $(y,x)\in [/mm] R2$? Das wäre ja ein
Hinweis darauf, dass $R2$ nicht antisymmetrisch ist.

Gruß
Kai

Bezug
                                                                
Bezug
Eigenschaften von Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Mo 11.02.2013
Autor: Mucki1986

Nein R2 ist nicht antisymmetrisch, aber was ist mit R1? Ich bin der Meinung, dass sie es nicht sein kann.

Bezug
                                                                        
Bezug
Eigenschaften von Relationen: Antisymmetrie
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 11.02.2013
Autor: kaju35

Hallo Mucki,

> Nein R2 ist nicht antisymmetrisch, aber was ist mit R1? Ich
> bin der Meinung, dass sie es nicht sein kann.

Da hast Du recht. Es wäre ja ein Widerspruch, wenn
gleichzeitig [mm] $(a,a)\in [/mm] R$ und [mm] $(a,a)\notin [/mm] R$ gelten würde.

Gruß
Kai


Bezug
                                                                                
Bezug
Eigenschaften von Relationen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Mo 11.02.2013
Autor: Mucki1986

Vielen Dank, dass du so gedulgig warst!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de