www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Eigenvektor
Eigenvektor < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 So 03.09.2006
Autor: Dignitas

Aufgabe
Bestimmen sie die Eigenvektoren und Eigenwerte der folgenden 2-reihigen Matrizen:

[mm] A=\pmat{ 1 & -1 \\ 0 & 2 } [/mm]

Wieder einmal Hallo liebe Rechenkünstler.

Ich habe das Konzept der Eigenvektoren und Eigenwerte verstanden, stosse aber bei obiger Aufgabe auf ein Problem. Hier meine Vorgehensweise:

[mm] p=\vmat{ 1-\lambda & -1 \\ 0 & 2-\lambda }=\lambda^2-3\lambda+2 [/mm]

Eigenwerte:
[mm] \lambda_1=1 [/mm]
[mm] \lambda_2=2 [/mm]

Für Eigenwert 1 = 1:
[mm] \pmat{ 1-1 & -1 \\ 0 & 2-1 }*x=\vektor{0 \\ 0} [/mm]
[mm] \pmat{ 0 & -1 \\ 0 & 1 }*x=\vektor{0 \\ 0} [/mm] !!!

(Eigenwert 2 für meine Frage m.E. nicht relevant)

An dieser Stelle gibt das Buch nun die Eigenvektoren [mm] \vektor{1 \\ 0} [/mm] und [mm] \vektor{1 \\ -1} [/mm] an.

Meine Frage bezieht sich nun auf die mit den drei roten Ausrufezeichen markierte Stelle. Die zweite Spalte ist abhängig von der ersten, fällt also weg. Aus der ersten Spalte erfahre ich nun das [mm] x_2=0 [/mm] ist, aber was geschieht mit [mm] x_1? [/mm]
Oder falls meine Frage zu unklar definiert ist, wie komme ich auf das oben genannte Ergebnis? :)

Viele Dank schonmal an alle die sich mit meinem Problem befassen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 So 03.09.2006
Autor: DaMenge

Hi,

du bist doch schon weit gekommen:

>  Aus der ersten
> Spalte erfahre ich nun das [mm]x_2=0[/mm] ist, aber was geschieht
> mit [mm]x_1?[/mm]

[mm] x_1 [/mm] ist beliebig, also : [mm] x_1=t [/mm] beliebig aus [mm] $\IR$ [/mm] , dann ist [mm] $\vektor{t\\0}=t*\vektor{1\\0}$ [/mm] ein allgemeiner Eigenvektor zum Eigenwert 1
(wenn v eigenvektor zum Eigenwert $lambda$ ist, dann ist auch immer t*v (für beliebige t) eigenvektor zum Eigenwert $lambda$)

bei [mm] x_2 [/mm] analog, du erhälst aus der ersten Zeile dann:
[mm] $-x_1 -x_2=0$ [/mm] also [mm] $x_2=-x_1$ [/mm] , also setze wieder [mm] $x_1=t$ [/mm] beliebig, dann ist [mm] $\vektor{t\\-t}=t*\vektor{1\\-1}$ [/mm] ein allgemeiner Eigenvektor zum Eigenwert 2

viele Grüße
DaMenge

Bezug
                
Bezug
Eigenvektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 So 03.09.2006
Autor: Dignitas

Stimmt, da war ich wirklich kurz davor. Den Eigenvektor zum Eigenwert 2 hatte ich auch schon richtig :) Was mich verwirrt hat, war einfach nur die Nuller-Spalte.

Vielen Dank für die ausführliche Antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de