Eigenvektor < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:11 Di 20.05.2008 | Autor: | chipbit |
Aufgabe | bestimmen Sie die Eigenwerte und Eigenräume zu
[mm] C=\pmat{1&-1&0\\-1&2&-1\\0&-1&1} [/mm] |
Hallo,
also als Eigenwerte habe ich -3, 0, 1 raus...zu 0 und 1 sind die Eigenvektoren kein Problem nur bei -3 komm ich irgendwie auf keinen Vektor. Kann mir jemand helfen? Ich habe aus [mm] det(C-\lambda [/mm] E)=0 und daraus folgend [mm] \vmat{1-\lambda&-1&0\\-1&2-\lambda&-1\\0&-1&1-\lambda} [/mm] und dem charakteristischen Polynom die Eigenwerte berechnet, dann setzt man den Eigenwert ja für [mm] \lambda [/mm] ein und kommt dann ja auf den Eigenvektor, aber für [mm] \lambda=-3 [/mm] gelingt mir das irgendwie nicht.Kann mir bitte jemand helfen?
|
|
|
|
> Hallo,
> also als Eigenwerte habe ich -3, 0, 1 raus...zu 0 und 1
> sind die Eigenvektoren kein Problem nur bei -3 komm ich
> irgendwie auf keinen Vektor.
Ich komme auf den dritten Eigenwert [mm] \lambda_{3} [/mm] = 3. Überprüfe nochmal deine Rechnung und poste sie im Zweifelsfall!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:47 Di 20.05.2008 | Autor: | chipbit |
Oha, da muss ich mich vertan haben, schön doof von mir. Naja, kann man nix machen, aber danke
|
|
|
|