www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenvektor
Eigenvektor < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor: Berechnen
Status: (Frage) beantwortet Status 
Datum: 21:10 So 08.07.2012
Autor: AntonK

Kurze Frage und zwar geht es um eine 3x3-Matrix mit nur Einsen als Einträge, die Eigenwerte sind demnach [mm] x_1=3 [/mm] und [mm] x_2=0 [/mm] und [mm] x_3=0. [/mm]

Habe ein Problem mit dem Eigenvektor zum Eigenwert 0.

Habe ja, wenn ich nun [mm] Av=x_2*v [/mm] rechne da stehen:

[mm] v_1+v_2+v_3=0 [/mm] und das 3mal.

Meine Frage ist, wir haben als Eigenvektore da raus:

[mm] v_1=(1 [/mm] -1 0) und [mm] v_2=(1 [/mm] 0 -1)

Warum muss das gelten? Es könnte doch auch (-2 1 1) sein, das löst die Gleichung ja auch.

Brauche nur eine kurze Antwort wieso.

Danke schonmal!

Schönen Abend noch.

        
Bezug
Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 So 08.07.2012
Autor: MathePower

Hallo AntonK,

> Kurze Frage und zwar geht es um eine 3x3-Matrix mit nur
> Einsen als Einträge, die Eigenwerte sind demnach [mm]x_1=3[/mm] und
> [mm]x_2=0[/mm] und [mm]x_3=0.[/mm]
>  
> Habe ein Problem mit dem Eigenvektor zum Eigenwert 0.
>  
> Habe ja, wenn ich nun [mm]Av=x_2*v[/mm] rechne da stehen:
>  
> [mm]v_1+v_2+v_3=0[/mm] und das 3mal.
>  
> Meine Frage ist, wir haben als Eigenvektore da raus:
>  
> [mm]v_1=(1[/mm] -1 0) und [mm]v_2=(1[/mm] 0 -1)
>  
> Warum muss das gelten? Es könnte doch auch (-2 1 1) sein,
> das löst die Gleichung ja auch.
>  


Weil diese Vektoren die obige Gleichung lösen.

Weiterhin lösen alle Linearkombinationen
dieser Vektoren die Gleichung.


> Brauche nur eine kurze Antwort wieso.
>  
> Danke schonmal!
>  
> Schönen Abend noch.


Gruss
MathePower

Bezug
                
Bezug
Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 So 08.07.2012
Autor: AntonK

Achso, das heißt ich muss sozusagen die maximale Anzahl an Vektoren aus dem Gleichungssytem ziehen oder wie? Weil der Vektor (2 -1 -1) alleine würde das ganze ja schon lösen. Heißt das, wenn ich eine 3-fache Nullstelle habe, dass ich dann 3 Vektoren aus einem Gleichungssytem bekomme?

Bezug
                        
Bezug
Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 So 08.07.2012
Autor: MathePower

Hallo AntonK,

> Achso, das heißt ich muss sozusagen die maximale Anzahl an
> Vektoren aus dem Gleichungssytem ziehen oder wie? Weil der
> Vektor (2 -1 -1) alleine würde das ganze ja schon lösen.
> Heißt das, wenn ich eine 3-fache Nullstelle habe, dass ich
> dann 3 Vektoren aus einem Gleichungssytem bekomme?


Hier hast Du eine Gleichung und 3 Variablen.
Damit sind zwei Variablen frei wählbar.
Daraus ergeben sich 2 linear unabhängige Lösungen.


Gruss
MathePower

Bezug
                                
Bezug
Eigenvektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 So 08.07.2012
Autor: AntonK

Ok, danke, ich verstehe nun.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de