www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Eigenvektor bestimmen
Eigenvektor bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Sa 13.05.2006
Autor: DaMOEkles

Aufgabe
Bestimmen Sie Eigenwerte und Eigenvektoren von:

A =  [mm] \pmat{ 1 & 1 \\ -2 & 1 } [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo alle zusammen. Ich bin der DaMOEkles und um ehrlich zu sein, ist Mathe für mich ein rotes Tuch. Leider schreibe ich bald eine wichtige Klausur und deswegen habe ich eine Frage.

Hier erstmal meine bisherige Lösung der Aufgabe:

A =  [mm] \pmat{ 1- \lambda & 1 \\ -2 & 1- \lambda } [/mm]

[mm] (1-\lambda)*(1-\lambda)+2 [/mm] = 0

[mm] 1-\lambda-1*\lambda+\lambda^{2}+2 [/mm] = 0

[mm] \lambda^{2}-2*\lambda+3 [/mm] = 0


[mm] x_{1,2}=-\bruch{-2}{2} \pm \wurzel{\bruch{2}{2}^{2}-3} [/mm]

[mm] \Rightarrow x_{1,2}=1 \pm \wurzel{-2} [/mm]

[mm] \lambda_{1} [/mm] = 1+2*i
[mm] \lambda_{2} [/mm] = 1-2*i


weiter gehts ja folgendermaßen:

[mm] (A-\lambda_{1}*E)*x [/mm] = 0

also tu ich das

(A-(1+2*i)*E)*x = 0

= [mm] \pmat{ 1-(1+2*i) & 1-(1+2*i) \\ -2-(1+2*i) & 1-(1+2*i) } [/mm] * [mm] \vektor{x_{1} \\ x_{2}} [/mm] = [mm] \vektor{0 \\ 0} [/mm]

So ... wenn ich das jetzt weiterverfolge kommt bei mir nur noch Unsinn raus. Gibt es da einen Trick, mit dem ich dem ich die Komplexe Zahl umwandeln kann, oder so?
Ich bin für jede Hilfe dankbar!

Gruß DaMOEkles


        
Bezug
Eigenvektor bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Sa 13.05.2006
Autor: vanguard2k


> Bestimmen Sie Eigenwerte und Eigenvektoren von:
>  
> A =  [mm]\pmat{ 1 & 1 \\ -2 & 1 }[/mm]
>  Ich habe diese Frage in
> keinem Forum auf anderen Internetseiten gestellt.
>  
> Hallo alle zusammen. Ich bin der DaMOEkles und um ehrlich
> zu sein, ist Mathe für mich ein rotes Tuch. Leider schreibe
> ich bald eine wichtige Klausur und deswegen habe ich eine
> Frage.
>  
> Hier erstmal meine bisherige Lösung der Aufgabe:
>  
> A =  [mm]\pmat{ 1- \lambda & 1 \\ -2 & 1- \lambda }[/mm]
>  
> [mm](1-\lambda)*(1-\lambda)+2[/mm] = 0
>  
> [mm]1-\lambda-1*\lambda+\lambda^{2}+2[/mm] = 0
>  
> [mm]\lambda^{2}-2*\lambda+3[/mm] = 0
>  
>
> [mm]x_{1,2}=-\bruch{-2}{2} \pm \wurzel{\bruch{2}{2}^{2}-3}[/mm]
>  
> [mm]\Rightarrow x_{1,2}=1 \pm \wurzel{-2}[/mm]
>  
> [mm]\lambda_{1}[/mm] = 1+2*i
>  [mm]\lambda_{2}[/mm] = 1-2*i
>  
>
> weiter gehts ja folgendermaßen:
>  
> [mm](A-\lambda_{1}*E)*x[/mm] = 0
>  
> also tu ich das
>  
> (A-(1+2*i)*E)*x = 0
>  
> = [mm]\pmat{ 1-(1+2*i) & 1-(1+2*i) \\ -2-(1+2*i) & 1-(1+2*i) }[/mm]
> * [mm]\vektor{x_{1} \\ x_{2}}[/mm] = [mm]\vektor{0 \\ 0}[/mm]
>  
> So ... wenn ich das jetzt weiterverfolge kommt bei mir nur
> noch Unsinn raus. Gibt es da einen Trick, mit dem ich dem
> ich die Komplexe Zahl umwandeln kann, oder so?
>  Ich bin für jede Hilfe dankbar!
>  
> Gruß DaMOEkles
>  

Hallo DaMOEkles!

Achtung! Bei dir gibts 2 Gründe warum unsinn rauskommt:

1.) Du hast die Eigenwerte falsch berechnet! Die richtigen sind: [mm]1 \pm \wurzel{2}*i[/mm]

2.) Du hast die Matrix E interpretiert als die Matrix mit lauter Einsen! In Wirklichkeit ist E jedoch die Einheitsmatrix, d.h. Einsen in der Hauptdiagonale und sonst lauter Nullen.

Das richtige LGS sieht jetzt so aus:

[mm]\pmat{ 1-(1+\wurzel{2}*i) & 1 \\ -2 & 1-(1+\wurzel{2}*i) }[/mm]
und die Umformungen sind im Komplexen halt a bissl lästig:
[mm]\pmat{ 1-(1+\wurzel{2}*i) & 1 \\ -2 & 1-(1+\wurzel{2}*i) }[/mm] ~
[mm]\pmat{ -\wurzel{2}*i) & 1 \\ -2 & -\wurzel{2}*i) }[/mm]~
und jetzt erste zeile mit  [mm]\wurzel{2}*i[/mm] multiplizieren und zur 2. dazuaddieren...
~[mm]\pmat{ -\wurzel{2}*i) & 1 \\ 0 & 0 }[/mm]

und wennst jetzt mit i multiplizierst und dann durch wurzel 2 dividierst sollte das Ganze kein Problem mehr darstellen

Hoffe dass ich dir helfen konnte

Michael


Bezug
                
Bezug
Eigenvektor bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Sa 13.05.2006
Autor: DaMOEkles

Danke für deine schnelle Antwort, aber ich hätte da noch eine Frage.

>  ~[mm]\pmat{ -\wurzel{2}*i & 1 \\ 0 & 0 }[/mm]
>  
> und wennst jetzt mit i multiplizierst und dann durch wurzel
> 2 dividierst sollte das Ganze kein Problem mehr darstellen

Würde dann nicht sowas dabei rauskommen?

-> mit i multiplizieren:

[mm]\pmat{ -\wurzel{2}*1 & i \\ 0 & 0 }[/mm]

-> durch wurzel 2 dividieren

[mm]\pmat{ -1 & \bruch{i}{\wurzel{2}} \\ 0 & 0 }[/mm]

Da habe ich das ganze doch nur vertauscht, oder habe ich wieder einen Fehler gemacht?

Bezug
                        
Bezug
Eigenvektor bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Sa 13.05.2006
Autor: taura

Hallo DaMOEkles!

Nein das ist so schon richtig, allerdings nicht unbedingt notwendig. Du erhälst das Gleichungssystem

[mm] $\pmat{ -\sqrt{2}*i & 1 \\ 0 & 0 }*\vektor{x \\ y}=\vektor{0 \\ 0}$ [/mm]

Wenn du dieses Gleichungssystem löst, erhälst du den Eigenraum zum Eigenwert [mm] $\lambda_1$ [/mm] (in diesem Fall eindimensional), ein Eigenvektor ist dann ein beliebiger Vektor aus diesem Eigenraum.

Gruß taura

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de