www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenvektoren
Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren: Probleme beim "Lesen" der LGS
Status: (Frage) beantwortet Status 
Datum: 00:03 Mo 02.12.2013
Autor: janko123

Ausgangsmatrix A: 5 7 0
                               0 3 1
                               0 0 3

Aufgabe war es die Eigenvektoren zu bestimmten sowie zu gucken ob diese eine Basis des [mm] R^3 [/mm] bilden.
Dazu habe ich zunächst die EW bestimmte t=5 und t=2 (doppelt).
Dann habe ich diese eingesetzt und die Matrix 2 7 0
                                                                          0 0 1
                                                                          0 0 0
erhalten. Jetzt weiß ich nicht wie man den EV dazu bestimmt.
Bei lin. abhängigen Spalten habe ich es verstanden, dass der EV von z.B.
-3 3 -3                  1  
1 -1 -1                  1
-2 2 -4      gleich   0 , da die ersten beiden Spalten lin. abhängig sind.

Danke für eure Tipps. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Mo 02.12.2013
Autor: moody

Hallo und [willkommenmr],

zur besseren Lesbarkeit deiner Aufgaben, kannst du dir ja mal den Formeleditor ansehen ;)

Du möchtest jetzt also die Eigenvektoren zum Eigenwert 3 bestimmen?

Du hast bereits [mm] $(A-\lambda [/mm] I)$
zu
[mm] \pmat{ 2 & 7 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0} [/mm]
bestimmt.

Nun gilt weiterhin:
[mm] $(A-\lambda [/mm] I) * [mm] \vec{c} [/mm] = [mm] \vec{0}$ [/mm] wobei [mm] \vec{c} [/mm] ein Eigenvektor ist.

Du musst jetzt also das homogene Gleichungssystem lösen und erhälst so deine Eigenvektoren.

lg moody

Bezug
                
Bezug
Eigenvektoren: Probleme beim "Lesen" der LGS
Status: (Frage) beantwortet Status 
Datum: 00:23 Mo 02.12.2013
Autor: janko123

Genau darin bestand mein Problem. Wie löse ich jenes jetzt? Wenn ich durch die Nullzeile eine x3=t setze, weiß ich nicht genau weiter. Die zweite Zeile bereitet mir Probleme.

Bezug
                        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:59 Mo 02.12.2013
Autor: moody


> Genau darin bestand mein Problem. Wie löse ich jenes
> jetzt? Wenn ich durch die Nullzeile eine x3=t setze, weiß
> ich nicht genau weiter. Die zweite Zeile bereitet mir
> Probleme.

Es ist ja auch nicht wirklich zweckmäßig [mm] $x_3=t$ [/mm] zu setzen, denn aus der 2. Zeile folgt ja bereits, dass [mm] $x_3=0$ [/mm] ist. Du könntest stattdessen [mm] $x_1=t$ [/mm] setzen.

lg moody


Bezug
                                
Bezug
Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:05 Mo 02.12.2013
Autor: janko123

Wäre der Eigenvektor dann t(1, -2/7, [mm] 0)^T [/mm] richtig?

Bezug
                                        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 01:36 Mo 02.12.2013
Autor: moody

[ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de