www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenvektoren berechnen!
Eigenvektoren berechnen! < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren berechnen!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Di 14.07.2009
Autor: Mue

Aufgabe
Gesucht sind alle Eigenwerte und -räume der Matrix:
[mm] \pmat{ 0 & 0 & 6 \\ \bruch{1}{2} & 0 & 0 \\ 0 & \bruch{1}{3} & 0 } [/mm]

Nun habe ich die Eigenwerte bzw. den 3-fachen Wert [mm] \lambda = 1 [/mm]  ausgerechnet.
Ich gehe weiter zur Eigenvektorberechnung mit [mm]\lambda = 1: \pmat{ -1 & 0 & 6 \\ \bruch{1}{2} & -1 & 0 \\ 0 & \bruch{1}{3} & -1 } \* \vektor{x_{1} \\ x_{2} \\ x_{3}} = \vektor{0 \\ 0 \\ 0} [/mm]

Stell ich nun ein Lösungssystem auf fehlt mir die Idee, wie ich da Werte für für meine x rausbekommen soll, die nicht 0 sind. Die Lösung ist [mm]\vektor{6 \\ 3 \\ 1}[/mm], aber rechnerisch dahin zukommen verstehe ich nicht.

Mein Gleichungssystem sieht so aus:

[mm]-1x_{1} + 6x_{3} = 0[/mm]
[mm]\bruch{1}{2} x_{1} -1x_{2} = 0[/mm]
[mm]\bruch{1}{3} x_{2} -1x_{3} = 0[/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenvektoren berechnen!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Di 14.07.2009
Autor: Mathe-Alfi

Hallo,

also wenn du in deinem Gleichungssystem z.B. [mm] x_{3}=t, [/mm] t  [mm] \in \IR [/mm] setzt, kannst du die anderen Werte in Abhängigkeit von t ausrechnen. Also bekommst du als Lösungsvektor(Eigenvektor):

v= [mm] \vektor{6 \\ 3 \\ 1 }*t [/mm] und für t kannst du dann alle Werte einsetzten.

Lg
Mathe-Alfi

Bezug
                
Bezug
Eigenvektoren berechnen!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:35 Di 14.07.2009
Autor: schachuzipus

Hallo,

> Hallo,
>  
> also wenn du in deinem Gleichungssystem z.B. [mm]x_{3}=t,[/mm] t  
> [mm]\in \IR[/mm] setzt, kannst du die anderen Werte in Abhängigkeit
> von t ausrechnen. Also bekommst du als
> Lösungsvektor(Eigenvektor):
>  
> v= [mm]\vektor{6 \\ 3 \\ 1 }*t[/mm] und für t kannst du dann alle
> Werte einsetzten.

außer $t=0$ [lol]

>  
> Lg
> Mathe-Alfi


Gruß

schachuzipus

Bezug
                
Bezug
Eigenvektoren berechnen!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:40 Di 14.07.2009
Autor: Mue

Aber wieso habe ich diese Freiheit einfach zu sagen [mm] x_{3} [/mm] is jetzt t?!
Sinn macht es, keine Frage.

Bezug
                        
Bezug
Eigenvektoren berechnen!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Di 14.07.2009
Autor: schachuzipus

Hallo [mm] $\Mu$, [/mm]

> Aber wieso habe ich diese Freiheit einfach zu sagen [mm]x_{3}[/mm]
> is jetzt t?!
>  Sinn macht es, keine Frage.  

Bringe doch mal dein (korrektes) Gleichungssystem mit Gauß in Zeilenstufenform ...

Beginne zB. damit, das [mm] $\frac{1}{2}$-fache [/mm] der 1. Zeile zur 2. Zeile zu addieren

Den Rest siehst du dann.

Du bekommst eine Nullzeile, also ein LGS mit 2 Gleichungen in 3 Unbekannten, du kannst also 1 Variable (zB. [mm] $x_3$) [/mm] frei wählen ...


LG

schachuzipus

Bezug
                                
Bezug
Eigenvektoren berechnen!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:53 Di 14.07.2009
Autor: Mue

Ja, die Idee mit der 0-Zeile hatte ich öfters schon mal gelesen, allerdings ist bei den Aufgaben immer verlangt, nur Methoden zu benutzen, die bereits in der Vorlesung besprochen wurden. Leider konnte ich weder auf seinen Folien noch auf meinen Aufzeichnung diese Richtung erkennen. Deswegen war ich verunsichert.
Aber es ist wahrscheinlich nicht immer so, dass man eine Nullzeile finden kann und dann eine Variable frei wählt, oder?

Vielen Dank auf jedenfall.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de