www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Eigenvektoren und Basis
Eigenvektoren und Basis < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren und Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 Mi 09.11.2011
Autor: qed

Aufgabe
Sei [mm]V=\IR^3[/mm] und seien [mm]U, W[/mm] Unterräume von [mm]V[/mm].
Sei [mm](\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix})[/mm] eine Basis von [mm]U[/mm] und [mm](\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})[/mm] eine Basis von [mm]W[/mm].
Sei [mm]f \in End(V)[/mm] definiert durch [mm]f(v)=u[/mm] für [mm]v=u+w[/mm] für [mm]u\in U, w\in W[/mm].

a) Berechnen Sie eine Basis [mm]B[/mm] von [mm]V[/mm] aus Eigenvektoren von [mm]f[/mm].
b) Berechnen Sie die Matrixdarstellung von [mm]f[/mm] bezüglich der Basis [mm]B[/mm].

Hallo,

komme hier irgendwie nicht weiter.

b) ist klar, aber a):

Es ist doch [mm]Bild(f) = U[/mm]. Damit kann ich [mm]f(\begin{pmatrix} a \\ b \\ c \end{pmatrix})=\begin{pmatrix} a+b \\ -a \\ b \end{pmatrix}[/mm] setzen. Jetzt will ich die Eigenwerte von [mm]f[/mm] berechnen, also erstmal das Charakteristische Polynom von [mm]f[/mm]. Hierzu berechne ich das Charakteristische Polynom der Darstellungsmatrix von [mm]f[/mm] bezüglich der Standartbasis von V:
[mm]p=det\begin{pmatrix} X-1 & -1 & 0 \\ 1 & X & 0 \\ 0 & -1 & X \end{pmatrix}=X(X^{2}-X+1)[/mm]. Die einzige reele Nullstelle von p ist 0 und [mm](\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})[/mm] ist eine Basis des Eigenraums zum Eigenwert 0. Hiermit kann ich natürlich nichts anfangen.

Wo kommt hier W ins Spiel? Wenn ich eine andere als die Standartbasis von [mm]\IR^3[/mm] nehme, erhalte ich auch den Eigenwert 0, nur dann mit Vielfachheit größer 1.
Irgendwo mache ich doch einen gravierenden Fehler!

Bin für jeden Hinweis sehr dankbar.

Viele Grüße

qed

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenvektoren und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Mi 09.11.2011
Autor: fred97


> Sei [mm]V=\IR^3[/mm] und seien [mm]U, W[/mm] Unterräume von [mm]V[/mm].
> Sei [mm](\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix})[/mm]
> eine Basis von [mm]U[/mm] und [mm](\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})[/mm]
> eine Basis von [mm]W[/mm].
>  Sei [mm]f \in End(V)[/mm] definiert durch [mm]f(v)=u[/mm] für [mm]v=u+w[/mm] für
> [mm]u\in U, w\in W[/mm].
>  
> a) Berechnen Sie eine Basis [mm]B[/mm] von [mm]V[/mm] aus Eigenvektoren von
> [mm]f[/mm].
>  b) Berechnen Sie die Matrixdarstellung von [mm]f[/mm] bezüglich
> der Basis [mm]B[/mm].
>  Hallo,
>  
> komme hier irgendwie nicht weiter.
>  
> b) ist klar, aber a):
>  
> Es ist doch [mm]Bild(f) = U[/mm]. Damit kann ich [mm]f(\begin{pmatrix} a \\ b \\ c \end{pmatrix})=\begin{pmatrix} a+b \\ -a \\ b \end{pmatrix}[/mm]
> setzen. Jetzt will ich die Eigenwerte von [mm]f[/mm] berechnen, also
> erstmal das Charakteristische Polynom von [mm]f[/mm]. Hierzu
> berechne ich das Charakteristische Polynom der
> Darstellungsmatrix von [mm]f[/mm] bezüglich der Standartbasis von
> V:
>  [mm]p=det\begin{pmatrix} X-1 & -1 & 0 \\ 1 & X & 0 \\ 0 & -1 & X \end{pmatrix}=X(X^{2}-X+1)[/mm].
> Die einzige reele Nullstelle von p ist 0 und
> [mm](\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})[/mm] ist eine Basis
> des Eigenraums zum Eigenwert 0. Hiermit kann ich natürlich
> nichts anfangen.
>
> Wo kommt hier W ins Spiel? Wenn ich eine andere als die
> Standartbasis von [mm]\IR^3[/mm] nehme, erhalte ich auch den
> Eigenwert 0, nur dann mit Vielfachheit größer 1.
>  Irgendwo mache ich doch einen gravierenden Fehler!
>
> Bin für jeden Hinweis sehr dankbar.

Mann o mann, man kann sich das Leben auch künstlich schwer machen !

(oben stimmt einiges nicht)

Setze

   [mm] u_1:=\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, [/mm]

   [mm] u_2:=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} [/mm]

   [mm] w:=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} [/mm]

Mach Dir folgendes Klar:

          [mm] B:=\{u_1,u_2,w\} [/mm]  ist eine Basis  des [mm] \IR^3, [/mm]

          [mm] f(u_1)=u_1=1*u_1, f(u_2)=u_2=1*u_2 [/mm] und $f(w)=0=0*w$


FRED


>  


>  
> Viele Grüße
>  
> qed
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Bezug
                
Bezug
Eigenvektoren und Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 Mi 09.11.2011
Autor: qed


> Mann o mann, man kann sich das Leben auch künstlich schwer
> machen !
>  
> (oben stimmt einiges nicht)
>  
> Setze
>  
> [mm]u_1:=\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},[/mm]
>  
> [mm]u_2:=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}[/mm]
>
> [mm]w:=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}[/mm]
>  
> Mach Dir folgendes Klar:
>  
> [mm]B:=\{u_1,u_2,w\}[/mm]  ist eine Basis  des [mm]\IR^3,[/mm]
>  
> [mm]f(u_1)=u_1=1*u_1, f(u_2)=u_2=1*u_2[/mm] und [mm]f(w)=0=0*w[/mm]
>  
>
> FRED


Danke FRED,

für den "Schlag auf den Hinterkopf".

Habe mir nochmal die Definition von Eigenwerten und Eigenvektoren angeschaut. Nun ist klar:
[mm]u_1[/mm] ist Eigenvektor von [mm]f[/mm] zum Eigenwert 1,
[mm]u_2[/mm] ist Eigenvektor von [mm]f[/mm] zum Eigenwert 1 und
[mm]w[/mm] ist Eigenvektor von [mm]f[/mm] zum Eigenwert 0.

Da [mm]\{u_1,u_2,w\}[/mm] eine Basis von [mm]\IR^3[/mm] ist, habe ich eine Basis von V aus Eigenvektoren von [mm]f[/mm] gefunden.

Vielen Dank nochmal.

Grüße

qed




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de