www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwert
Eigenwert < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Di 28.09.2004
Autor: metropolitan

hallo,

Habe ein Problem:

Es sei K ein Körper, n [mm] \in \IN [/mm] mit n [mm] \ge [/mm] 2 und v [mm] \in K^n [/mm] ein Spaltenvektor ungleich 0. Weiter sei [mm] A=v*v^t. [/mm] Zeigen Sie, dass A den Eigenwert 0 hat. Welche Dimension hat der Eigenraum von A zum Eigenwert 0?

Hier mein Ansatz:
Sei [mm] \lambda \in [/mm] K ein Eigenwert von A. Dann gibt es einen Vektor w [mm] \in K^n [/mm] mit w [mm] \ne [/mm] 0, so dass
[mm] Aw=\lambda [/mm] *w
[mm] <=>v*v^t*w= \lambda [/mm] *w
[mm] <=>v*v^t*w- \lambda [/mm] *w=0

Ist das bisher richtig so? wenn ja, kann man daraus schon etwas folgern?
lg
metro



Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Di 28.09.2004
Autor: Irrlicht

Hallo metropolitan,

Das was du bisher gerechnet hast, ist richtig. Du brauchst aber nicht alle Eigenwerte ausrechnen und deshalb kannst du von Anfang an lambda=0 wählen.

Um zu zeigen, dass A den Eigenwert 0 hat, genügt es, einen Vektor w ungleich Null anzugeben, so dass A*w = 0 ist. Ein solcher Vektor ist gerade eine nichttriviale Lösung des Gleichungssystems A*w=0.
Wenn du das A mal ausrechnest, wirst du feststellen, dass die Spalten von A allesamt skalare Vielfache von v sind. (*)
Welche Determinante hat also A?
Was sagt uns das über die Lösbarkeit des Gleichungssystems A*w = 0?

Der Eigenraum zum Eigenwert 0 ist gerade der Lösungsraum des Gleichungssystems A*w = 0. Da du den Rang von A hoffentlich leicht sehen kannst (siehe *), solltest du nun in der Lage sein, die Dimension des Lösungsraumes anzugeben.

Liebe Grüsse,
Irrlicht



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de