Eigenwert < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
hallo,
Habe ein Problem:
Es sei K ein Körper, n [mm] \in \IN [/mm] mit n [mm] \ge [/mm] 2 und v [mm] \in K^n [/mm] ein Spaltenvektor ungleich 0. Weiter sei [mm] A=v*v^t. [/mm] Zeigen Sie, dass A den Eigenwert 0 hat. Welche Dimension hat der Eigenraum von A zum Eigenwert 0?
Hier mein Ansatz:
Sei [mm] \lambda \in [/mm] K ein Eigenwert von A. Dann gibt es einen Vektor w [mm] \in K^n [/mm] mit w [mm] \ne [/mm] 0, so dass
[mm] Aw=\lambda [/mm] *w
[mm] <=>v*v^t*w= \lambda [/mm] *w
[mm] <=>v*v^t*w- \lambda [/mm] *w=0
Ist das bisher richtig so? wenn ja, kann man daraus schon etwas folgern?
lg
metro
Ich habe diese Frage in keinem anderen Forum gestellt
|
|
|
|
Hallo metropolitan,
Das was du bisher gerechnet hast, ist richtig. Du brauchst aber nicht alle Eigenwerte ausrechnen und deshalb kannst du von Anfang an lambda=0 wählen.
Um zu zeigen, dass A den Eigenwert 0 hat, genügt es, einen Vektor w ungleich Null anzugeben, so dass A*w = 0 ist. Ein solcher Vektor ist gerade eine nichttriviale Lösung des Gleichungssystems A*w=0.
Wenn du das A mal ausrechnest, wirst du feststellen, dass die Spalten von A allesamt skalare Vielfache von v sind. (*)
Welche Determinante hat also A?
Was sagt uns das über die Lösbarkeit des Gleichungssystems A*w = 0?
Der Eigenraum zum Eigenwert 0 ist gerade der Lösungsraum des Gleichungssystems A*w = 0. Da du den Rang von A hoffentlich leicht sehen kannst (siehe *), solltest du nun in der Lage sein, die Dimension des Lösungsraumes anzugeben.
Liebe Grüsse,
Irrlicht
|
|
|
|