www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwert + Projektion
Eigenwert + Projektion < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert + Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Fr 06.02.2009
Autor: visionmaster17

Hallo,

ich habe eine Frage zu einer Aufgabe.

Aufgabe: Es seien V ein endlichdimensionaler [mm] \IC-Vektorraum [/mm] und [mm] \Phi \in [/mm] End(V) mit [mm] \Phi^4 [/mm] = [mm] Id_V. [/mm] Zeigen Sie:

Ist 1 ein Eigenwert von [mm] \Phi, [/mm] so ist der Endomorphismus [mm] \produkt [/mm] := [mm] \frac{1}{4}(id_V [/mm] + [mm] \Phi [/mm] + [mm] \Phi^2 [/mm] + [mm] \Phi^3) [/mm] eine Projektion auf den Eigenraum von [mm] \Phi [/mm] zum Eigenwert 1.

Meine Lösung:
Wenn [mm] \produkt [/mm] eine Projektion sein soll, so muss gelten [mm] \produkt [/mm] = [mm] \produkt^2. [/mm] Richtig?

Da [mm] \produkt [/mm] angeblich eine Projektion auf den Eigenraum von [mm] \Phi [/mm] zum Eigenwert 1 ist muss [mm] \produkt [/mm] = [mm] \produkt^2 [/mm] nur für Vektoren aus dem Eigenraum zum Eigenwert 1 gelten. Richtig?

Daher meine Überlegung:

Mit [mm] E_1 [/mm] bezeichne ich den Eigenraum zum Eigenwert 1. Für [mm] E_1 [/mm] gilt:

[mm] E_1 [/mm] = [mm] Kern(\Phi [/mm] - [mm] id_v [/mm] * 1) = [mm] Kern(\Phi [/mm] - [mm] id_v) [/mm]

Jetzt zeige ich, dass für alle v [mm] \in E_1 [/mm] die Gleichung [mm] \produkt [/mm] = [mm] \produkt^2 [/mm] gilt.

Ach übrigens: Für v [mm] \in E_1 [/mm] gilt [mm] \Phi(v) [/mm] - [mm] id_V(v) [/mm] = v - v = 0 [mm] \Rightarrow \Phi(v) [/mm] = v.

Also: [mm] \produkt(v) [/mm] = [mm] \frac{1}{4}(id_V(v) [/mm] + [mm] \Phi(v) [/mm] + [mm] \Phi^2(v) [/mm] + [mm] \Phi^3(v)) [/mm] = [mm] \frac{1}{4}(v [/mm] + v + [mm] \Phi(\Phi(v)) [/mm] + [mm] \Phi(\Phi(\Phi(v)))) [/mm] = [mm] \frac{1}{4}(v [/mm] + v + v + v) = [mm] \frac{1}{4}(4v) [/mm] = v

Jetzt berechne ich [mm] \produkt^2(v): [/mm]

[mm] \produkt^2(v) [/mm] = [mm] \frac{1}{16}(id_V(v) [/mm] + [mm] \Phi(v) [/mm] + [mm] \Phi^2(v) [/mm] + [mm] \Phi^3(v))(id_V(v) [/mm] + [mm] \Phi(v) [/mm] + [mm] \Phi^2(v) [/mm] + [mm] \Phi^3(v)) [/mm] = [mm] \frac{1}{16}(4v)(4v) [/mm] = [mm] \frac{1}{16}(16v^2) [/mm] = [mm] v^2. [/mm]

Ups. [mm] \produkt^2(v) [/mm] sollte doch gleich [mm] \produkt(v) [/mm] sein. Aber v [mm] \not= v^2. [/mm]

Wo ist mein Fehler? Die Musterlösung hat übrigens einen ganz anderen Ansatz...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwert + Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Fr 06.02.2009
Autor: angela.h.b.


> Hallo,
>  
> ich habe eine Frage zu einer Aufgabe.
>  
> Aufgabe: Es seien V ein endlichdimensionaler [mm]\IC-Vektorraum[/mm]
> und [mm]\Phi \in[/mm] End(V) mit [mm]\Phi^4[/mm] = [mm]Id_V.[/mm] Zeigen Sie:
>  
> Ist 1 ein Eigenwert von [mm]\Phi,[/mm] so ist der Endomorphismus
> [mm]\produkt[/mm] := [mm]\frac{1}{4}(id_V[/mm] + [mm]\Phi[/mm] + [mm]\Phi^2[/mm] + [mm]\Phi^3)[/mm] eine
> Projektion auf den Eigenraum von [mm]\Phi[/mm] zum Eigenwert 1.
>  
> Meine Lösung:
>  Wenn [mm]\produkt[/mm] eine Projektion sein soll, so muss gelten
> [mm]\produkt[/mm] = [mm]\produkt^2.[/mm] Richtig?
>  
> Da [mm]\produkt[/mm] angeblich eine Projektion auf den Eigenraum von
> [mm]\Phi[/mm] zum Eigenwert 1 ist muss [mm]\produkt[/mm] = [mm]\produkt^2[/mm] nur für
> Vektoren aus dem Eigenraum zum Eigenwert 1 gelten.
> Richtig?
>  

Hallo,

nein das stimmt nicht.

[mm] \pi [/mm] ist eine Abbildung aus dem V in den V, und wenn es eine Projektion ist, muß  [mm] \pi=\pi^2 [/mm] gelten für alle [mm] v\in [/mm] V.

Projektion auf [mm] E_1 [/mm] bedeutet, daß das Bild von [mm] \pi [/mm] gerade [mm] E_1 [/mm] sein soll.


> Daher meine Überlegung:
>  
> Mit [mm]E_1[/mm] bezeichne ich den Eigenraum zum Eigenwert 1. Für
> [mm]E_1[/mm] gilt:
>  
> [mm]E_1[/mm] = [mm]Kern(\Phi[/mm] - [mm]id_v[/mm] * 1) = [mm]Kern(\Phi[/mm] - [mm]id_v)[/mm]
>  
> Jetzt zeige ich, dass für alle v [mm]\in E_1[/mm] die Gleichung
> [mm]\produkt[/mm] = [mm]\produkt^2[/mm] gilt.
>  
> Ach übrigens: Für v [mm]\in E_1[/mm] gilt [mm]\Phi(v)[/mm] - [mm]id_V(v)[/mm] = v - v
> = 0 [mm]\Rightarrow \Phi(v)[/mm] = v.
>  
> Also: [mm]\produkt(v)[/mm] = [mm]\frac{1}{4}(id_V(v)[/mm] + [mm]\Phi(v)[/mm] +
> [mm]\Phi^2(v)[/mm] + [mm]\Phi^3(v))[/mm] = [mm]\frac{1}{4}(v[/mm] + v + [mm]\Phi(\Phi(v))[/mm]
> + [mm]\Phi(\Phi(\Phi(v))))[/mm] = [mm]\frac{1}{4}(v[/mm] + v + v + v) =
> [mm]\frac{1}{4}(4v)[/mm] = v
>  
> Jetzt berechne ich [mm]\produkt^2(v):[/mm]
>  
> [mm]\produkt^2(v)[/mm] = [mm]\frac{1}{16}(id_V(v)[/mm] + [mm]\Phi(v)[/mm] + [mm]\Phi^2(v)[/mm]
> + [mm]\Phi^3(v))(id_V(v)[/mm] + [mm]\Phi(v)[/mm] + [mm]\Phi^2(v)[/mm] + [mm]\Phi^3(v))[/mm] =
> [mm]\frac{1}{16}(4v)(4v)[/mm] = [mm]\frac{1}{16}(16v^2)[/mm] = [mm]v^2.[/mm]
>  
> Ups. [mm]\produkt^2(v)[/mm] sollte doch gleich [mm]\produkt(v)[/mm] sein.
> Aber v [mm]\not= v^2.[/mm]
>  
> Wo ist mein Fehler?

Hast Du Dir schon Gedanken darüber gemacht, was Du mit [mm] v^2 [/mm] eigentlich meinst? Spätestens an dieser Stelle solltest Du eigentlich stutzig werden...

Der Fehler liegt bei [mm] \pi^2(v). [/mm] Damit  ist keinesfalls [mm] \pi(v)*(\pi(v)) [/mm] gemeint. Was sollte das auch sein?

Es ist doch [mm] \pi^2=\pi\circ\pi, [/mm] also [mm] \pi^2(v)=\pi(\pi(v)). [/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de