www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwert/Diagonalisierbarkeit
Eigenwert/Diagonalisierbarkeit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert/Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:50 So 06.05.2012
Autor: EvelynSnowley2311

Aufgabe
a) Bestimmen sie alle  Eigenwerte der Matrix

A: [mm] \pmat{ 2 & 4 & 4\\ 0 & 1 & -1\\ 0 & 1 & 3 } [/mm]

b) Es sei B [mm] \in Mat_{nxn} (\IC) [/mm] diagonalisierbar und es gelte für die Eigenwerte [mm] \lambda_1 [/mm] bis [mm] \lambda_n [/mm] von B [mm] \lambda_k \in [/mm] {-1,1} , k= 1,...,n

Zeigen Sie:

[mm] B^2 [/mm] = In, dabei bezeichnet In die Einheitsmatrix


c) Zeigen sie, dass die Aussage aus B falsch wird, wenn man die Vorraussetzung diagonalisierbar weglässt.

huhu,


also zu a) hab ich schon die reellen Eigenwerte raus, aber gibt es auch komplexe? das char. Polynom:

[mm] \lambda^3 [/mm] -6 [mm] \lambda^2 [/mm] + 12 [mm] \lambda [/mm] - 8 = 0

=> [mm] \lambda_{1,2,3} [/mm] = 2 (im reellen)

Ausserdem hab ich raus, dass die Matrix in [mm] \IR [/mm] nicht diagonalisierbar ist. Heisst das automatisch, dass die Matrix in [mm] \IC [/mm] auch nicht diagonalisierbar ist? Oder sind alle Matrizen in [mm] \IC [/mm] diagonalisierbar?




b) für Diagonalisierbarkeit muss ich ja fordern, dass die Eigenwerte paarweise versch sind, d.h. bei einer Matriz n x n mit n gerade hab ich Hälfte -1 andere Hälfte 1 als Eigenwerte. Bei ungerade hätte ich z.b. -1 über ohne "Partner" , aber durch das Quadrieren wird das ja ausgeglichen. Ich dachte vlt daran, es über die Determinante zu zeigen.



c) bin mir nicht sicher, aber ist jede diagonalisierbare Matrix unitär? bzw was bedeutet in [mm] \IC [/mm] NICHT diagonalisierbar?



Lg,

Eve

        
Bezug
Eigenwert/Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:13 So 06.05.2012
Autor: fred97


> a) Bestimmen sie alle  Eigenwerte der Matrix
>  
> A: [mm]\pmat{ 2 & 4 & 4\\ 0 & 1 & -1\\ 0 & 1 & 3 }[/mm]
>  
> b) Es sei B [mm]\in Mat_{nxn} (\IC)[/mm] diagonalisierbar und es
> gelte für die Eigenwerte [mm]\lambda_1[/mm] bis [mm]\lambda_n[/mm] von B
> [mm]\lambda_k \in[/mm] {-1,1} , k= 1,...,n
>  
> Zeigen Sie:
>  
> [mm]B^2[/mm] = In, dabei bezeichnet In die Einheitsmatrix
>  
>
> c) Zeigen sie, dass die Aussage aus B falsch wird, wenn man
> die Vorraussetzung diagonalisierbar weglässt.
>  huhu,
>  
>
> also zu a) hab ich schon die reellen Eigenwerte raus, aber
> gibt es auch komplexe? das char. Polynom:
>  
> [mm]\lambda^3[/mm] -6 [mm]\lambda^2[/mm] + 12 [mm]\lambda[/mm] - 8 = 0
>  
> => [mm]\lambda_{1,2,3}[/mm] = 2 (im reellen)

Das stimmt.


>  
> Ausserdem hab ich raus, dass die Matrix in [mm]\IR[/mm] nicht
> diagonalisierbar ist.


Wie hast Du das gemacht  ?


> Heisst das automatisch, dass die
> Matrix in [mm]\IC[/mm] auch nicht diagonalisierbar ist? Oder sind
> alle Matrizen in [mm]\IC[/mm] diagonalisierbar?

Wenn die Matrix über [mm] \IR [/mm] nicht diagonalisierbar ist, so auch nicht  über [mm] \IC [/mm]

Edit: obiges ist Quatsch.

>
>
>
>
> b) für Diagonalisierbarkeit muss ich ja fordern, dass die
> Eigenwerte paarweise versch sind,

Unsinn. Die Einheitsmatrix ist prima diagonalisierbar.




> d.h. bei einer Matriz n x
> n mit n gerade hab ich Hälfte -1 andere Hälfte 1 als
> Eigenwerte. Bei ungerade hätte ich z.b. -1 über ohne
> "Partner" , aber durch das Quadrieren wird das ja
> ausgeglichen. Ich dachte vlt daran, es über die
> Determinante zu zeigen.


Es gibt eine Basis [mm] b_1,...,b_n [/mm] des [mm] \IC^n [/mm] mit

                      [mm] Bb_j=s_jb_j [/mm] (j=1,....,n)  mit  [mm] s_j= \pm [/mm] 1

Berechne nun [mm] B^2b_j. [/mm]


>
>
>
> c) bin mir nicht sicher, aber ist jede diagonalisierbare
> Matrix unitär?

Nein. Die Nullmatrix ist diagonalisuerbar, aber nicht unitär.

> bzw was bedeutet in [mm]\IC[/mm] NICHT
> diagonalisierbar?

Es gibt keine Basis des [mm] \IC^n, [/mm] die aus Eigenvektoren der Matrix besteht.


Bei c) sollst Du ein Gegenbeispiel finden !

FRED

>  
>
>
> Lg,
>  
> Eve


Bezug
                
Bezug
Eigenwert/Diagonalisierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:14 So 06.05.2012
Autor: EvelynSnowley2311

Danke Fred ;)

Bezug
                
Bezug
Eigenwert/Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 So 06.05.2012
Autor: EvelynSnowley2311

huhu

ich hab ein bisschen rumgegooglet, und da steht ein Satz

.."Die Matrix A in Beispiel 6.2.12 ist diagonalisierbar über [mm] \IC [/mm] , aber nicht über [mm] \IR [/mm] "  Zitat aus

http://www.iazd.uni-hannover.de/~erne/lina1/dateien/linAlg6.pdf

Seite 74 unter 6.3.7 Beispiele> > >  >  


>
> Wenn die Matrix über [mm]\IR[/mm] nicht diagonalisierbar ist, so
> auch nicht  über [mm]\IC[/mm]
>  >

bist du dir ganz sicher?^^

Bezug
                        
Bezug
Eigenwert/Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Mo 07.05.2012
Autor: fred97


> huhu
>  
> ich hab ein bisschen rumgegooglet, und da steht ein Satz
>  
> .."Die Matrix A in Beispiel 6.2.12 ist diagonalisierbar
> über [mm]\IC[/mm] , aber nicht über [mm]\IR[/mm] "  Zitat aus
>
> http://www.iazd.uni-hannover.de/~erne/lina1/dateien/linAlg6.pdf
>  
> Seite 74 unter 6.3.7 Beispiele> > >  >  

>
>
> >
> > Wenn die Matrix über [mm]\IR[/mm] nicht diagonalisierbar ist, so
> > auch nicht  über [mm]\IC[/mm]
>  >  >

> bist du dir ganz sicher?^^


Hoppla, was ich da geschrieben habe, ist Unsinn



FRED

Bezug
        
Bezug
Eigenwert/Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Mo 07.05.2012
Autor: EvelynSnowley2311


> a) Bestimmen sie alle  Eigenwerte der Matrix
>  
> A: [mm]\pmat{ 2 & 4 & 4\\ 0 & 1 & -1\\ 0 & 1 & 3 }[/mm]
>  
> b) Es sei B [mm]\in Mat_{nxn} (\IC)[/mm] diagonalisierbar und es
> gelte für die Eigenwerte [mm]\lambda_1[/mm] bis [mm]\lambda_n[/mm] von B
> [mm]\lambda_k \in[/mm] {-1,1} , k= 1,...,n
>  
> Zeigen Sie:
>  
> [mm]B^2[/mm] = In, dabei bezeichnet In die Einheitsmatrix
>  
>
> c) Zeigen sie, dass die Aussage aus B falsch wird, wenn man
> die Vorraussetzung diagonalisierbar weglässt.
>  huhu,
>  
>
> also zu a) hab ich schon die reellen Eigenwerte raus, aber
> gibt es auch komplexe? das char. Polynom:
>  
> [mm]\lambda^3[/mm] -6 [mm]\lambda^2[/mm] + 12 [mm]\lambda[/mm] - 8 = 0
>  
> => [mm]\lambda_{1,2,3}[/mm] = 2 (im reellen)
>  
> Ausserdem hab ich raus, dass die Matrix in [mm]\IR[/mm] nicht
> diagonalisierbar ist.

huhu
weiß jmd wie ich herausfinde, ob die Matrix in  [mm] \IC [/mm] diagonalisierbar ist bzw ich die Eigenwerte rauskriege, die komplex sind? Also aus dem char. Polynom oben

Bezug
                
Bezug
Eigenwert/Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Mo 07.05.2012
Autor: fred97


> > a) Bestimmen sie alle  Eigenwerte der Matrix
>  >  
> > A: [mm]\pmat{ 2 & 4 & 4\\ 0 & 1 & -1\\ 0 & 1 & 3 }[/mm]
>  >  
> > b) Es sei B [mm]\in Mat_{nxn} (\IC)[/mm] diagonalisierbar und es
> > gelte für die Eigenwerte [mm]\lambda_1[/mm] bis [mm]\lambda_n[/mm] von B
> > [mm]\lambda_k \in[/mm] {-1,1} , k= 1,...,n
>  >  
> > Zeigen Sie:
>  >  
> > [mm]B^2[/mm] = In, dabei bezeichnet In die Einheitsmatrix
>  >  
> >
> > c) Zeigen sie, dass die Aussage aus B falsch wird, wenn man
> > die Vorraussetzung diagonalisierbar weglässt.
>  >  huhu,
>  >  
> >
> > also zu a) hab ich schon die reellen Eigenwerte raus, aber
> > gibt es auch komplexe? das char. Polynom:
>  >  
> > [mm]\lambda^3[/mm] -6 [mm]\lambda^2[/mm] + 12 [mm]\lambda[/mm] - 8 = 0
>  >  
> > => [mm]\lambda_{1,2,3}[/mm] = 2 (im reellen)
>  >  
> > Ausserdem hab ich raus, dass die Matrix in [mm]\IR[/mm] nicht
> > diagonalisierbar ist.
>  
> huhu
>  weiß jmd wie ich herausfinde, ob die Matrix in  [mm]\IC[/mm]
> diagonalisierbar ist bzw ich die Eigenwerte rauskriege, die
> komplex sind? Also aus dem char. Polynom oben


Auch im Komplexen hat das Polynom

           $ [mm] \lambda^3 [/mm] $ -6 $ [mm] \lambda^2 [/mm] $ + 12 $ [mm] \lambda [/mm] $ - 8

die 3 -fache Nullstelle [mm] \lambda=2. [/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de