www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Eigenwert, einfache Unterräume
Eigenwert, einfache Unterräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert, einfache Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Fr 30.04.2010
Autor: Teufel

Aufgabe 1
Seien h: V [mm] \to [/mm] W, f: V [mm] \to [/mm] V, g: W [mm] \to [/mm] W linear und h insbesondere surjektiv.
Ferner sei g(h(v))=h(f(v)) für alle v.
Zeige: Ist a Eigenwert von g, so ist a auch Eigenwert von f.

Aufgabe 2
Sei V ein [mm] \IC-Vektorraum, [/mm] V endlichdimensional.
Zeige: Jeder einfache Unterraum von V ist eindimensional.

Hi!

Mal wieder ein paar Probleme.

Zur 1)
Also ich weiß ja, dass es ein w [mm] \in [/mm] W gibt mit [mm] g(w)=\lambda [/mm] w. Und da h surjektiv ist, gibt es ein v [mm] \in [/mm] V mit h(v)=w.

Dann ist [mm] g(h(v))=g(w)=\lambda [/mm] w=h(f(v)). Gut, wenn ich [mm] f(v)=\lambda [/mm] v verwende, geht die Gleichung auch super auf, aber das hilft mir ja leider nicht.
Also solange das f(v) innerhalb von h steht, kann ich da denke ich nicht viel mit machen.
Aber ich kann ja nicht z.B. voraussetzen, dass [mm] h^{-1} [/mm] existiert.
Kann mir da bitte jemand helfen?

Zur 2)
Ich weiß nicht, wie geläufig der Begriff der "Einfachheit" von Vektorräumen ist, aber eine Abbildung [mm] \phi: [/mm] V [mm] \to [/mm] V ist W-einfach, wenn [mm] \phi(W) \subseteq [/mm] W für ein Unterraum W von V gilt, aber für alle Unterräume von W gilt dies nicht mehr. Also wenn [mm] \{0\} \not= [/mm] U [mm] \subseteq [/mm] W gilt nicht [mm] \phi(U) \subseteq [/mm] U.

Zumindest wollte ich davon ausgehen, dass ein einfacher Unterraum von V die Dimension 2 oder höher hat und das zum Widerspruch führen. Sollte ich diesen Gedankengang weiterverfolgen, oder sollte ich da anders herangehen? Hat da jemand Tipps für mich?

Danke!

[anon] Teufel

        
Bezug
Eigenwert, einfache Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Fr 30.04.2010
Autor: SEcki


>  Also solange das f(v) innerhalb von h steht, kann ich da
> denke ich nicht viel mit machen.
>  Aber ich kann ja nicht z.B. voraussetzen, dass [mm]h^{-1}[/mm]
> existiert.
>  Kann mir da bitte jemand helfen?

Ich habe auch keine große Idee, aber [m]f(v)-\lambda*v\in Ker(h)[/m]. Hilft das?

> weiterverfolgen, oder sollte ich da anders herangehen? Hat
> da jemand Tipps für mich?

[m]\IC[/m] ist alg. abgeschlossen!

SEcki

Bezug
                
Bezug
Eigenwert, einfache Unterräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:17 So 02.05.2010
Autor: Teufel

Hi!

Danke erst mal (mal wieder).

Die 2. Frage ist nun klar, habe ich nicht lang genug drüber nachgedacht und bin falsch rangegangen.

Aber die 1. Frage bleibt noch offen. Ich weiß weiterhin: Wenn $f(v) [mm] \not= \lambda [/mm] v$ ist, so müssen v und f(v) linear unabhängig sein. Kann ich das irgendwie zu einem Widerspruch zu den Ausgangsbedingungen führen?

[anon] Teufel

Bezug
        
Bezug
Eigenwert, einfache Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 So 02.05.2010
Autor: angela.h.b.


> Seien h: V [mm]\to[/mm] W, f: V [mm]\to[/mm] V, g: W [mm]\to[/mm] W linear und h
> insbesondere surjektiv.
>  Ferner sei g(h(v))=h(f(v)) für alle v.
>  Zeige: Ist a Eigenwert von g, so ist a auch Eigenwert von  f.

Hallo,

man ist ja ziemlich schnell und unoriginell bei der Erkenntnis, daß [mm] f(v)-\lambda [/mm] v im Kern von h liegt.

Sind die Vektorräume eigentlich als endlichdimensional vorausgesetzt?
Wenn ja, dann kannst Du Dimensionsbetrachtungen durchführen:

dim V [mm] \ge [/mm] dim W=dim Bild h,

dim Bild [mm] g\circ [/mm] h [mm] \le [/mm] dim Bild h,

und mit dem Kern-Bild-Satz bekommst Du schließlich, daß dim V=dim W.
Damit ist h dann auch injektiv, [mm] f(v)-\lambda [/mm] v somit =0.

Gruß v. Angela




Bezug
                
Bezug
Eigenwert, einfache Unterräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:48 So 02.05.2010
Autor: Teufel

Hi!

Danke für die Hilfe.
Es steht nichts davon da, dass die Vektorräume endlichdimensional sein sollen, aber ich glaube, dass wir das stillschweigend voraussetzen dürfen.

Ich glaube ich habs jetzt auch, danke euch beiden.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de