www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwertberechnung 4x4 Matrix
Eigenwertberechnung 4x4 Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwertberechnung 4x4 Matrix: Korrektur
Status: (Frage) beantwortet Status 
Datum: 04:56 Sa 01.09.2012
Autor: Raijin92

Aufgabe
Berechnen Sie alle Eigenwerte der Matrix

[mm] A=\pmat{ 5 & -1 & 1 & 1 \\ 2 & 2 & 3 & 2 \\0 & 0 & 1 & -3 \\0 & 0 & 2 & -4} [/mm]

Hallo leute,

Ich komme bei der berechnung von den Eigenwerten einer 4x4 Matrix nicht mehr weiter. Hoffe ihr könnt mir weiter helfen.

Mein Rechenweg:
det(A [mm] -\lambda [/mm] E)=
[mm] \vmat{ 5-\lambda & -1 & 1 & 1 \\ 2 & 2-\lambda & 3 & 2 \\0 & 0 & 1-\lambda & -3 \\0 & 0 & 2 & -4-\lambda} [/mm]

Hab die Determinante zu 1. Spalte gebildet

det(A [mm] -\lambda [/mm] E)=
[mm] (5-\lambda) \* \vmat{ 2 -\lambda & 3 & 2 \\ 0 & 1 -\lambda & -3\\ 0& 2 & -4 -\lambda} [/mm] -  2 [mm] \* \vmat{ -1&1&1 \\ 0 & 1 -\lambda & -3\\ 0& 2 & -4 -\lambda} [/mm]

Nochmal die Determinante zu 1. Spalte:

[mm] (5-\lambda) \* (2-\lambda) \* \vmat{ 1-\lambda & -3 \\ 2 & -4-\lambda }+2 \* \vmat{ 1-\lambda & -3 \\ 2 & -4-\lambda } [/mm]

= [mm] (5-\lambda) \* (2-\lambda) [/mm] * ( [mm] (1-\lambda) \*(-4-\lambda)-(2\*(-3)) [/mm] ) +2 [mm] \* [/mm] ( [mm] (1-\lambda) \*(-4-\lambda)-(2\*(-3)) [/mm] )

[mm] =(\lambda^{2}-7\lambda+10)\* (\lambda^{2}+3\lambda+2) [/mm] + [mm] 2\* (\lambda^{2}+3\lambda+2) [/mm]

[mm] =(\lambda^{2}-7\lambda+10)\* (\lambda^{2}+3\lambda+2) [/mm] +  [mm] (2\lambda^{2}+6\lambda+4) [/mm]

Jetzt weiß ich nicht mehr was ich machen muss hab ich irgendwo ein fehler?

Ich wollte eigentlich die p-q formel anwenden aber da kommen nur falsche ergebnisse.





Die lösungen sind schon bekannt aber ich bekomme diese werte nicht heraus:

det(A [mm] -\lambda E)=\vmat{ 5-\lambda & -1 \\ 2 & 2-\lambda }\* \vmat{ 1-\lambda & -3 \\ 2 & -4-\lambda } [/mm] = [mm] (\lambda^{2}-7\lambda+12) \*(\lambda^{2}+3\lambda+2) [/mm]

[mm] \lambda_{1}=4, \lambda_{2}=3, \lambda_{3}=-1, \lambda_{4}=-2 [/mm]


Gehe ich die sache evtl. zu kompliziert an?
Gibts da irgend ein Trick dahinter?

Ich bedanke mich im voraus.
Viele Grüße Raijin92


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwertberechnung 4x4 Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:55 Sa 01.09.2012
Autor: franzzink

Hallo Raijin,

du hast ja fast alles richtig gemacht:

> Berechnen Sie alle Eigenwerte der Matrix
>  
> [mm]A=\pmat{ 5 & -1 & 1 & 1 \\ 2 & 2 & 3 & 2 \\0 & 0 & 1 & -3 \\0 & 0 & 2 & -4}[/mm]
>  
> Hallo leute,
>  
> Ich komme bei der berechnung von den Eigenwerten einer 4x4
> Matrix nicht mehr weiter. Hoffe ihr könnt mir weiter
> helfen.
>  
> Mein Rechenweg:
>  det(A [mm]-\lambda[/mm] E)=
>  [mm]\vmat{ 5-\lambda & -1 & 1 & 1 \\ 2 & 2-\lambda & 3 & 2 \\0 & 0 & 1-\lambda & -3 \\0 & 0 & 2 & -4-\lambda}[/mm]
>  
> Hab die Determinante zu 1. Spalte gebildet
>  
> det(A [mm]-\lambda[/mm] E)=
>   [mm](5-\lambda) \* \vmat{ 2 -\lambda & 3 & 2 \\ 0 & 1 -\lambda & -3\\ 0& 2 & -4 -\lambda}[/mm]
> -  2 [mm]\* \vmat{ -1&1&1 \\ 0 & 1 -\lambda & -3\\ 0& 2 & -4 -\lambda}[/mm]
>
> Nochmal die Determinante zu 1. Spalte:
>  
> [mm](5-\lambda) \* (2-\lambda) \* \vmat{ 1-\lambda & -3 \\ 2 & -4-\lambda }+2 \* \vmat{ 1-\lambda & -3 \\ 2 & -4-\lambda }[/mm]
>  
> = [mm](5-\lambda) \* (2-\lambda)[/mm] * ( [mm](1-\lambda) \*(-4-\lambda)-(2\*(-3))[/mm]
> ) +2 [mm]\*[/mm] ( [mm](1-\lambda) \*(-4-\lambda)-(2\*(-3))[/mm] )
>  
> [mm]=(\lambda^{2}-7\lambda+10)\* (\lambda^{2}+3\lambda+2)[/mm] + [mm]2\* (\lambda^{2}+3\lambda+2)[/mm]

Bis hierher stimmt alles. Klammere jetzt  [mm] (\lambda^{2}+3\lambda+2)[/mm] aus, dann erhälst du:

[mm] ... = (\lambda^{2}-7\lambda+10 + 2)\* (\lambda^{2}+3\lambda+2)[/mm]
[mm] = (\lambda^{2}-7\lambda+12)\* (\lambda^{2}+3\lambda+2)[/mm]

Dies ist das Ergebnis der Musterlösung.

> [mm]=(\lambda^{2}-7\lambda+10)\* (\lambda^{2}+3\lambda+2)[/mm] +  
> [mm](2\lambda^{2}+6\lambda+4)[/mm]
>  
> Jetzt weiß ich nicht mehr was ich machen muss hab ich
> irgendwo ein fehler?
>  
> Ich wollte eigentlich die p-q formel anwenden aber da
> kommen nur falsche ergebnisse.
>  
>
>
>
>
> Die lösungen sind schon bekannt aber ich bekomme diese
> werte nicht heraus:
>  
> det(A [mm]-\lambda E)=\vmat{ 5-\lambda & -1 \\ 2 & 2-\lambda }\* \vmat{ 1-\lambda & -3 \\ 2 & -4-\lambda }[/mm]
> = [mm](\lambda^{2}-7\lambda+12) \*(\lambda^{2}+3\lambda+2)[/mm]
>
> [mm]\lambda_{1}=4, \lambda_{2}=3, \lambda_{3}=-1, \lambda_{4}=-2[/mm]
>  
>
> Gehe ich die sache evtl. zu kompliziert an?
>  Gibts da irgend ein Trick dahinter?
>  
> Ich bedanke mich im voraus.
>  Viele Grüße Raijin92
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Grüße
franzzink


Bezug
        
Bezug
Eigenwertberechnung 4x4 Matrix: Trick
Status: (Antwort) fertig Status 
Datum: 14:04 Sa 01.09.2012
Autor: Schadowmaster


> Gehe ich die sache evtl. zu kompliziert an?
>  Gibts da irgend ein Trick dahinter?


Ja, allerdings, den gibt es:
Deine Matrix ist eine sogenannte Blockdreiecksmatrix.
Sie hat die Form $A = [mm] \pmat{B & C \\ 0 & D}$, [/mm] wobei $B,C,D$ jeweils $2 [mm] \times [/mm] 2$ Matrizen sind und $0$ für einen $2 [mm] \times [/mm] 2$ Nullblock steht.
Für eine Matrix in der Form gilt $det(A) = det(B)*det(D)$, eine Aussage die dir wahrscheinlich schon begegnet ist, da die von dir gepostete Musterlösung so arbeitet.

lg

Schadow

Bezug
        
Bezug
Eigenwertberechnung 4x4 Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Sa 01.09.2012
Autor: Raijin92

Danke an alle die mir geholfen haben hat mir echt weiter geholfen.
Hab das mit dem ausklammern gar nicht gesehen.
Und dieser Trick ist auch sehr gut. Könnte mir eine menge Zeit damit Sparen
Naja ich habs jetzt gelöst und komme auch jetzt auf das ergebnis.
Echt super :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de