www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Eigenwerte
Eigenwerte < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Fr 25.01.2008
Autor: Franzie

Aufgabe
Bestimme mit Hilfe der Potenzmethode den betragsmäßig größten und den betragsmäßig kleinsten Eigenwert der Matrix A. Berechne alternativ diese beiden Eigenwerte über den Rayleigh-Quotienten.

Hallo ihr Lieben!

Sitze vor der obigen Aufgabe und komme einfach nicht weiter. Meine Matrix A sieht wie folgt aus:
[mm] A=\pmat{ 1 & 3 &4 \\ 3 & 1 & 4 \\ 4 & 0 & 1} [/mm]
Hab das mit der Potenzmethode leider noch nicht ganz verstanden. Haben dazu in der Vorlesung nur aufgeschrieben, dass [mm] x_{0} [/mm] der Startvektor ist und [mm] x_{k+1}=A*x_{k} [/mm]
WIe wähle ich denn mein [mm] x_{0} [/mm] am besten und wie krieg ich denn aus der Darstellung [mm] x_{k+1}=A*x_{k} [/mm] meinen Eigenvektor? Vielleicht habt ihr auch eine Seite, wo ein gutes Beispiel draufsteht, damit ich mich daran orientieren kann.
Vielen Dank schon mal im Voraus!

liebe Grüße

        
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Fr 25.01.2008
Autor: zetamy

Hallo,

Der Algorithmus der Potenzmethode lautet so:

1. Wähle [mm] x_0\in\IR^3 [/mm] mit [mm] Ax_0\ne 0 [/mm].
2. Berechne [mm] y_0=\frac{x_0}{||x_0||}[/mm].
3. Für k=0,1,2,... berechne [mm] p_A(y_k)=\left\langle Ay_k,y_k \right\rangle [/mm] und [mm] y_{k+1}=\frac{Ay_k}{||Ay_k||} [/mm]

Dann konvergiert [mm] p_A(y_k)\to\lambda_{max}[/mm]  und [mm] y_k\to v_{max}\ne 0[/mm], wobei [mm]\lambda_{max}[/mm] der betragsgrößte Eigenwert und [mm]v_{max}[/mm] der zugehörige normierte Eigenvektor ist.

Den Startvektor kannst du beliebig wählen (bis auf die Bedingung in 1). Einen geeigneten zu wählen, ist eine Kunst... oder du verwendst zunächst den Satz von Geschgorin, sofern du diesen kennst.

Gruß, zetamy

Bezug
                
Bezug
Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Fr 25.01.2008
Autor: Franzie

Danke schon mal für die schnelle Antwort. Habe mir dazu schon mal die Gershgorin Kreise gezeichnet, falls du das meinst. In deren Vereinigung liegen doch dann die Eigenwerte. Nur weiß ich nicht, wie ich daraus jetzt nen geeigneten Startvektor finde. Ach ja,...was du mit p=<....> geschrieben hast, ist das  ein Skalarprodukt?

liebe Grüße

Bezug
                        
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 Fr 25.01.2008
Autor: leduart

Hallo
Musst du das "zu Fuss" machen? oder tuts ein kleines Programm?
dann fang einfach mit dem einfachsten an [mm] (1,0,0)^T [/mm]
und ja, <a,b> ist die übliche Schreibweise für ein Skalarprodukt.
Gruss leduart

Bezug
                
Bezug
Eigenwerte: falsche Voraussetzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:38 Sa 26.01.2008
Autor: mathemaduenn

Hallo zetamy,
Die Voraussetzung ist eigentlich das [mm] x_0 [/mm] nicht senkrecht auf dem Eigenvektor ( [mm] v_{\max} [/mm] )zum größten Eigenwert ( [mm] \lambda_{\max} [/mm] ) steht.
viele Grüße
mathemaduenn

Bezug
                
Bezug
Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Sa 26.01.2008
Autor: Franzie

Alles klar. Danke euch! Und wie mache ich das, wenn ich den betragsmäßig kleinsten Eigenwert haben will? Nehm ich dann anstelle von A die Inverse?

Bezug
                        
Bezug
Eigenwerte: Ja
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 26.01.2008
Autor: mathemaduenn

genauso ist es ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de