www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Eigenwerte
Eigenwerte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Do 09.02.2012
Autor: kozlak

Aufgabe
Geg. ist das Randeigenwertproblem [mm] y''+4y'+(4+\lambda)y=0 [/mm]  ;
[mm] y(0)=y(2\pi)=0 [/mm]
Dei Eigenwerte seien positiv. Das DGL soll in selbstadjungierter Form gebracht , anschließend die zugehörigen Eigenwerte mit entsprechen normierten Eigenfunktionen ermittelt werden.


Hallo,


ich stelle mich hier einwenig an, hoffe dennoch auf Hilfe :)

DGL mit [mm] a_0=1, a_1=4; a_2=4 +\lambda [/mm] in selbstadjungierter Form zu:

(exp(4x)y')' + [mm] exp(4x)(4+\lambda)y=0. [/mm]

Und da doch L[y]=(exp(4x)y')'  , könnte man die Eigenwerte doch mit dem Ansatz berechnen:
[mm] L[y]=\mu*y [/mm]
[mm] (exp(4x)y')-\mu*y=0? [/mm]

Geht das überhaupt so?

mfg

kozlak


        
Bezug
Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Do 09.02.2012
Autor: kozlak

Hallo!

uiuiuiui, das ist wohl offensichtlicher Blödsinn.....hab mich mal ein bisschen umgesehen und bin auf einen Ansatz [mm] y(x)=x^{\mu} [/mm] gestossen. Leider wurde ab da nicht mehr weiter gemacht, so dass ich praktisch in der Luft hänge;) Also, was bringt das .....oder bringt das eher gar nichts?

mfg,
kozlak





Bezug
                
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Do 09.02.2012
Autor: MathePower

Hallo  kozlak,

> Hallo!
>  
> uiuiuiui, das ist wohl offensichtlicher Blödsinn.....hab
> mich mal ein bisschen umgesehen und bin auf einen Ansatz
> [mm]y(x)=x^{\mu}[/mm] gestossen. Leider wurde ab da nicht mehr
> weiter gemacht, so dass ich praktisch in der Luft hänge;)
> Also, was bringt das .....oder bringt das eher gar nichts?
>  


Der Ansatz [mm]y(x)=x^{\mu}[/mm] wird Dir nichts bringen.

Besser ist der Ansatz [mm]y(x)=e^{\mu*x}[/mm]


> mfg,
>  kozlak
>  


Gruss
MathePower

Bezug
                        
Bezug
Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Do 09.02.2012
Autor: kozlak

Hallo

> Der Ansatz [mm]y(x)=x^{\mu}[/mm] wird Dir nichts bringen.
>  
> Besser ist der Ansatz [mm]y(x)=e^{\mu*x}[/mm]

Weil in der selbstadjungierten Form des DGL exp auftaucht? Und wieso macht man das bzw., was will man erreichen?

mfg, kozlak

Bezug
                                
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Do 09.02.2012
Autor: MathePower

Hallo kozlak,

> Hallo
>  
> > Der Ansatz [mm]y(x)=x^{\mu}[/mm] wird Dir nichts bringen.
>  >  
> > Besser ist der Ansatz [mm]y(x)=e^{\mu*x}[/mm]
>  
> Weil in der selbstadjungierten Form des DGL exp auftaucht?
> Und wieso macht man das bzw., was will man erreichen?
>  


Diesen Ansatz macht man bei linearen homogenen DGLn mit konstanten Koeffizienten, um die Lösungen dieser DGL herauszufinden.


> mfg, kozlak


Gruss
MathePower

Bezug
        
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Do 09.02.2012
Autor: MathePower

Hallo kozlak,

> Geg. ist das Randeigenwertproblem [mm]y''+4y'+(4+\lambda)y=0[/mm]  
> ;
>  [mm]y(0)=y(2\pi)=0[/mm]
>  Dei Eigenwerte seien positiv. Das DGL soll in
> selbstadjungierter Form gebracht , anschließend die
> zugehörigen Eigenwerte mit entsprechen normierten
> Eigenfunktionen ermittelt werden.
>  
> Hallo,
>  
>
> ich stelle mich hier einwenig an, hoffe dennoch auf Hilfe
> :)
>  
> DGL mit [mm]a_0=1, a_1=4; a_2=4 +\lambda[/mm] in selbstadjungierter
> Form zu:
>  
> (exp(4x)y')' + [mm]exp(4x)(4+\lambda)y=0.[/mm]
>  
> Und da doch L[y]=(exp(4x)y')'  , könnte man die Eigenwerte
> doch mit dem Ansatz berechnen:
>  [mm]L[y]=\mu*y[/mm]
>  [mm](exp(4x)y')-\mu*y=0?[/mm]
>  
> Geht das überhaupt so?
>  


Nein, das geht nicht so.


> mfg
>
> kozlak

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de